-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain_text_recognition.py
368 lines (313 loc) · 14.6 KB
/
train_text_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
import datetime
import faulthandler
import os
import chainer
import chainermn
import numpy as np
from chainer.training import extensions
from tensorboardX import SummaryWriter
from commands.interactive_train import open_interactive_prompt
from common.dataset_management.dataset_server import DatasetClient
from common.datasets import scatter_dataset
from common.datasets.text_recognition_image_dataset import TextRecognitionImageDataset
from config.recognition_config import parse_config
from evaluation.text_recognition_evaluator import TextRecognitionEvaluatorFunction, TextRecognitionTensorboardEvaluator
from insights.tensorboard_gradient_histogram import TensorboardGradientPlotter
from insights.text_recognition_bbox_plotter import TextRecognitionBBoxPlotter
from optimizers.radam import RAdam
from text.lstm_text_localizer import LSTMTextLocalizer
from text.transformer_recognizer import TransformerTextRecognizer
from train_utils.backup import get_import_info
from train_utils.datatypes import Size
from train_utils.logger import Logger
from updaters.transformer_text_updater import TransformerTextRecognitionUpdater
faulthandler.enable()
def load_pretrained_model(model_file, model, be_strict=False):
with np.load(model_file) as handle:
chainer.serializers.NpzDeserializer(handle, strict=be_strict).load(model)
def main():
parser = argparse.ArgumentParser(description="Train a KISS model", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("log_name", help="name of log")
parser.add_argument("-c", "--config", default="config.cfg", help="path to config file to use")
parser.add_argument("-g", "--gpu", nargs='+', default=["-1"], help="gpu if to use (-1 means cpu)")
parser.add_argument("-l", "--log-dir", default='tests', help="path to log dir")
parser.add_argument("--snapshot-interval", type=int, default=10000, help="number of iterations after which a snapshot will be taken")
parser.add_argument("--log-interval", type=int, default=100, help="log interval")
parser.add_argument("--port", type=int, default=1337, help="port that is used by bbox plotter to send predictions on test image")
parser.add_argument("--rl", dest="resume_localizer", help="path to snapshot that is to be used to resume training of localizer")
parser.add_argument("--rr", dest="resume_recognizer", help="path to snapshot that us to be used to pre-initialize recognizer")
parser.add_argument("--num-layers", type=int, default=18, help="Resnet Variant to use")
parser.add_argument("--no-imgaug", action='store_false', dest='use_imgaug', default=True, help="disable image augmentation with `imgaug`, but use naive image augmentation instead")
parser.add_argument("--rdr", "--rotation-dropout-ratio", dest="rotation_dropout_ratio", type=float, default=0, help="ratio for dropping rotation params in text localization network")
parser.add_argument("--save-gradient-information", action='store_true', default=False, help="enable tensorboard gradient plotter")
parser.add_argument("--dump-graph", action='store_true', default=False, help="dump computational graph to file")
parser.add_argument("--image-mode", default="RGB", choices=["RGB", "L"], help="mode in which images are to be loaded")
parser.add_argument("--resume", help="path to logdir from which training shall resume")
args = parser.parse_args()
args = parse_config(args.config, args)
# comm = chainermn.create_communicator(communicator_name='flat')
comm = chainermn.create_communicator()
args.gpu = comm.intra_rank
print(args.gpu)
if args.resume is not None:
log_dir = os.path.relpath(args.resume)
else:
log_dir = os.path.join("logs", args.log_dir, "{}_{}".format(datetime.datetime.now().isoformat(), args.log_name))
args.log_dir = log_dir
# set dtype
chainer.global_config.dtype = 'float32'
if comm.rank == 0:
# create log dir
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
report_keys = ["epoch", "iteration", "loss/localizer/loss"]
if args.use_memory_manager:
memory_manager = DatasetClient()
memory_manager.connect()
train_kwargs = {"memory_manager": memory_manager, "base_name": "train_file"}
# recognition_kwargs = {"memory_manager": memory_manager, "base_name": "text_recognition_file"}
validation_kwargs = {"memory_manager": memory_manager, "base_name": "val_file"}
else:
train_kwargs = {"npz_file": args.train_file}
# recognition_kwargs = {"npz_file": args.text_recognition_file}
validation_kwargs = {"npz_file": args.val_file}
if comm.rank == 0:
train_dataset = TextRecognitionImageDataset(
char_map=args.char_map,
image_size=args.image_size,
root=os.path.dirname(args.train_file),
dtype=chainer.get_dtype(),
use_imgaug=args.use_imgaug,
transform_probability=0.4,
keep_aspect_ratio=True,
image_mode=args.image_mode,
**train_kwargs,
)
validation_dataset = TextRecognitionImageDataset(
char_map=args.char_map,
image_size=args.image_size,
root=os.path.dirname(args.val_file),
dtype=chainer.get_dtype(),
transform_probability=0,
keep_aspect_ratio=True,
image_mode=args.image_mode,
**validation_kwargs,
)
else:
train_dataset, validation_dataset = None, None
train_dataset = scatter_dataset(train_dataset, comm)
validation_dataset = scatter_dataset(validation_dataset, comm)
# uncomment all commented parts of the code to train the model with extra recognizer training
# text_recognition_dataset = TextRecognitionImageCharCropDataset(
# char_map=args.char_map,
# image_size=args.target_size,
# root=os.path.dirname(args.text_recognition_file),
# dtype=chainer.get_dtype(),
# transform_probability=0,
# image_mode=args.image_mode,
# gpu_id=args.gpu,
# reverse=False,
# resize_after_load=False,
# **recognition_kwargs,
# )
data_iter = chainer.iterators.MultithreadIterator(train_dataset, args.batch_size)
validation_iter = chainer.iterators.MultithreadIterator(validation_dataset, args.batch_size, repeat=False)
# text_recognition_iter = chainer.iterators.MultithreadIterator(text_recognition_dataset, max(args.batch_size, 32))
localizer = LSTMTextLocalizer(
Size(*args.target_size),
num_bboxes_to_localize=train_dataset.num_chars_per_word,
num_layers=args.num_layers,
dropout_ratio=args.rotation_dropout_ratio,
)
if args.resume_localizer is not None:
load_pretrained_model(args.resume_localizer, localizer)
recognizer = TransformerTextRecognizer(
train_dataset.num_chars_per_word,
train_dataset.num_words_per_image,
train_dataset.num_classes,
train_dataset.bos_token,
num_layers=args.num_layers,
)
if args.resume_recognizer is not None:
load_pretrained_model(args.resume_recognizer, recognizer)
models = [localizer, recognizer]
if comm.rank == 0:
tensorboard_handle = SummaryWriter(log_dir=args.log_dir, graph=None)
else:
tensorboard_handle = None
localizer_optimizer = RAdam(alpha=args.learning_rate, beta1=0.9, beta2=0.98, eps=1e-9)
localizer_optimizer = chainermn.create_multi_node_optimizer(localizer_optimizer, comm)
localizer_optimizer.setup(localizer)
localizer_optimizer.add_hook(
chainer.optimizer_hooks.GradientClipping(2)
)
if args.save_gradient_information:
localizer_optimizer.add_hook(
TensorboardGradientPlotter(tensorboard_handle, args.log_interval),
)
recognizer_optimizer = RAdam(alpha=args.learning_rate)
recognizer_optimizer = chainermn.create_multi_node_optimizer(recognizer_optimizer, comm)
recognizer_optimizer.setup(recognizer)
optimizers = [localizer_optimizer, recognizer_optimizer]
# log train information everytime we encouter a new epoch or args.log_interval iterations have been done
log_interval_trigger = (
lambda trainer:
(trainer.updater.is_new_epoch or trainer.updater.iteration % args.log_interval == 0)
and trainer.updater.iteration > 0
)
updater_args = {
"iterator": {
'main': data_iter,
# 'rec': text_recognition_iter,
},
"optimizer": {
"opt_gen": localizer_optimizer,
"opt_rec": recognizer_optimizer,
},
"tensorboard_handle": tensorboard_handle,
"tensorboard_log_interval": log_interval_trigger,
"recognizer_update_interval": 1,
"device": args.gpu,
}
updater = TransformerTextRecognitionUpdater(
models=[localizer, recognizer],
**updater_args
)
trainer = chainer.training.Trainer(updater, (args.num_epoch, 'epoch'), out=args.log_dir)
data_to_log = {
'log_dir': args.log_dir,
'image_size': args.image_size,
'num_layers': args.num_layers,
'num_chars': train_dataset.num_chars_per_word,
'num_words': train_dataset.num_words_per_image,
'num_classes': train_dataset.num_classes,
'keep_aspect_ratio': train_dataset.keep_aspect_ratio,
'localizer': get_import_info(localizer),
'recognizer': get_import_info(recognizer),
'bos_token': train_dataset.bos_token,
}
for argument in filter(lambda x: not x.startswith('_'), dir(args)):
data_to_log[argument] = getattr(args, argument)
def backup_train_config(stats_cpu):
if stats_cpu['iteration'] == args.log_interval:
stats_cpu.update(data_to_log)
if comm.rank == 0:
for model in models:
trainer.extend(
extensions.snapshot_object(model, model.__class__.__name__ + '_{.updater.iteration}.npz'),
trigger=lambda trainer: trainer.updater.is_new_epoch or trainer.updater.iteration % args.snapshot_interval == 0,
)
trainer.extend(
extensions.snapshot(filename='trainer_snapshot', autoload=args.resume is not None),
trigger=(args.snapshot_interval, 'iteration')
)
evaluation_function = TextRecognitionEvaluatorFunction(localizer, recognizer, args.gpu, train_dataset.blank_label, train_dataset.char_map)
trainer.extend(
TextRecognitionTensorboardEvaluator(
validation_iter,
localizer,
device=args.gpu,
eval_func=evaluation_function,
tensorboard_handle=tensorboard_handle,
num_iterations=200,
),
trigger=(args.test_interval, 'iteration'),
)
# every epoch run the model on test datasets
test_dataset_prefix = "test_dataset_"
test_datasets = [arg for arg in dir(args) if arg.startswith(test_dataset_prefix)]
for test_dataset_name in test_datasets:
print(f"setting up testing for {test_dataset_name[len(test_dataset_prefix):]} dataset")
dataset_path = getattr(args, test_dataset_name)
if args.use_memory_manager:
test_kwargs = {"memory_manager": memory_manager, "base_name": test_dataset_name}
else:
test_kwargs = {"npz_file": dataset_path}
test_dataset = TextRecognitionImageDataset(
char_map=args.char_map,
image_size=args.image_size,
root=os.path.dirname(dataset_path),
dtype=chainer.get_dtype(),
transform_probability=0,
keep_aspect_ratio=True,
image_mode=args.image_mode,
**test_kwargs,
)
test_iter = chainer.iterators.MultithreadIterator(test_dataset, args.batch_size, repeat=False)
trainer.extend(
TextRecognitionTensorboardEvaluator(
test_iter,
localizer,
device=args.gpu,
eval_func=evaluation_function,
tensorboard_handle=tensorboard_handle,
base_key=test_dataset_name[len(test_dataset_prefix):]
),
trigger=(args.snapshot_interval, 'iteration')
)
models.append(updater)
logger = Logger(
os.path.dirname(os.path.realpath(__file__)),
args.log_dir,
postprocess=backup_train_config,
trigger=log_interval_trigger,
exclusion_filters=['*logs*', '*.pyc', '__pycache__', '.git*'],
resume=args.resume is not None,
)
if args.test_image is not None:
plot_image = train_dataset.load_image(args.test_image)
gt_bbox = None
else:
plot_image = validation_dataset.get_example(0)['image']
gt_bbox = None
bbox_plotter = TextRecognitionBBoxPlotter(
plot_image,
os.path.join(args.log_dir, 'bboxes'),
args.target_size,
send_bboxes=True,
upstream_port=args.port,
visualization_anchors=[
["visual_backprop_anchors"],
],
device=args.gpu,
render_extracted_rois=True,
num_rois_to_render=4,
sort_rois=False,
show_visual_backprop_overlay=True,
visual_backprop_index=0,
show_backprop_and_feature_vis=True,
gt_bbox=gt_bbox,
render_pca=False,
log_name=args.log_name,
char_map=train_dataset.char_map,
blank_label=train_dataset.blank_label,
predictors={
"localizer": localizer,
"recognizer": recognizer,
},
)
trainer.extend(bbox_plotter, trigger=(10, 'iteration'))
trainer.extend(
logger,
trigger=log_interval_trigger
)
trainer.extend(
extensions.PrintReport(report_keys, log_report='Logger'),
trigger=log_interval_trigger
)
# learning rate shift after each epoch
trainer.extend(
extensions.ExponentialShift("alpha", 0.1, optimizer=localizer_optimizer),
trigger=(1, 'epoch')
)
trainer.extend(extensions.ProgressBar(update_interval=10))
if args.dump_graph:
trainer.extend(extensions.dump_graph('loss/localizer/loss', out_name='model.dot'))
open_interactive_prompt(
bbox_plotter=bbox_plotter,
optimizer=optimizers,
)
trainer.run()
if __name__ == "__main__":
main()