forked from jeroenterheerdt/HAsmartirrigation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
367 lines (324 loc) · 14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#test.py [apikey for OWM] [Latitude] [Longitude]
import sys
import requests
import json
import pyeto
import datetime
import math
APIKEY = ""
LAT = 0
LON = 0
ELEVATION = 0
#METRIC TO IMPERIAL (US) FACTORS
MM_TO_INCH_FACTOR = 0.03937008
LITER_TO_GALLON_FACTOR = 0.26417205
M2_TO_SQ_FT_FACTOR = 10.7639104
M_TO_FT_FACTOR = 3.2808399
class Smart_Irrigation_Test():
def __init__(self):
self.rain = 0.0 # mm
self.snow = 0.0 # mm
self.rain_day = 0.0 # mm
self.snow_day = 0.0 # mm
self.fao56 = 0.0 # mm in a day (value needs to be / by hours)
self.fao56_day = 0.0 # mm in day
self.bucketDelta = 0.0 #mm / day
# store non-peak ETs in mm / day
if MODE == "metric":
self.non_peak_ET = MONTHLY_ET
else:
self.non_peak_ET = [x / MM_TO_INCH_FACTOR for x in MONTHLY_ET]
# find peak ET
self.peak_ET = max(self.non_peak_ET)
#self.peak_ET_month = self.non_peak_ET.index(self.peak_ET)
# calculate throughput (liter per minute)
if MODE == "metric":
self.throughput = NUM_SPRINKLERS * FLOW
else:
self.throughput = NUM_SPRINKLERS * (FLOW / LITER_TO_GALLON_FACTOR)
# store area (m2)
if MODE == "metric":
self.area = AREA
else:
self.area = AREA / M2_TO_SQ_FT_FACTOR
# store elevation (m)
if MODE == "metric":
self.elevation = ELEVATION
else:
self.elevation = ELEVATION / M_TO_FT_FACTOR
# calculate precipitation rate (mm / hour)
self.precipitation_rate = (self.throughput*60) / self.area
# calculate base schedule index (minutes)
self.base_schedule_index = self.peak_ET / self.precipitation_rate * 60
def get_data(self):
url = OWM_URL.format(LAT, LON, APIKEY)
d = None
try:
r = requests.get(url)
d = json.loads(r.text)
#print("WB_IR get_data read {}".format(d))
return d
except Exception as e:
print("Failed to get OWM URL {}".format(r.text))
pass
# def rain_desc_to_mm(self, code):
CONVERT = {500: 1.0,
501: 2.0,
502: 5.0,
503: 20.0,
504: 60.0,
511: 5.0,
520: 5.0,
521: 5.0,
522: 20.0,
531: 50.0}
if code in CONVERT:
return CONVERT[code]
else:
print("RAIN_DESC_TO_MM: Can't find any key in {} to map to,\
returning 10mm".format(code))
return 10.0
# estimate the current precipitation
# def update_precipitation_current(self, d):
if "rain" in d:
if "1h" in d["rain"]:
self.rain = float(d["rain"]["1h"])
if "3h" in d["rain"]:
self.rain = float(d["rain"]["3h"])/3.0
print("Rain_mm based on prediction: {}".format(self.rain))
else:
print("No rain predicted in next 3hrs.")
if "weather" in d:
w = d['weather']
for obj in w:
if obj['main']=='Rain':
self.rain = rain_desc_to_mm(obj['id'])
if "snow" in d:
if "1h" in d["snow"]:
self.snow = float(d["snow"]["1h"])
print("Snow predicted in the next hour: {}".format(self.snow))
print("RAIN_MM: {}".format(self.rain))
print("SNOW_MM: {}".format(self.snow))
# get rainfall from todays forecast
def calculate_precipitation(self, d):
if "rain" in d:
self.rain_day = float(d["rain"])
if "snow" in d:
self.snow_day = float(d["snow"])
# def calculate_ev_fao56_factor(self, d):
dt = d['dt']
factor = 0.0
if dt > d['sunrise']:
if dt < d['sunset']:
factor = min(float(dt - d['sunrise'])/3600.0, 1.0)
else:
if dt > d['sunset']:
factor = (dt - d['sunrise'])/3600.0
if factor < 1.0:
factor = 1.0 - factor
return factor
#def estimate_fao56_hourly(self, day_of_year, temp_c, tdew, elevation, latitude, rh, wind_m_s, atmos_pres):
""" Estimate fao56 from weather """
sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude),
pyeto.sol_dec(day_of_year))
daylight_hours = pyeto.daylight_hours(sha)
sunshine_hours = 0.8 * daylight_hours
ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
et_rad = pyeto.et_rad(pyeto.deg2rad(latitude),
pyeto.sol_dec(day_of_year), sha, ird)
sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours,
et_rad)
net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23)
cs_rad = pyeto.cs_rad(elevation, et_rad)
avp = pyeto.avp_from_tdew(tdew)
#not sure if I trust this net_out_lw_rad calculation here!
net_out_lw_rad = pyeto.net_out_lw_rad(temp_c-1, temp_c, sol_rad,
cs_rad, avp)
net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad)
eto = pyeto.fao56_penman_monteith(
net_rad=net_rad,
t=pyeto.convert.celsius2kelvin(temp_c),
ws=wind_m_s,
svp=pyeto.svp_from_t(temp_c),
avp=avp,
delta_svp=pyeto.delta_svp(temp_c),
psy=pyeto.psy_const(atmos_pres))
return eto
#def calculate_fao56_hourly(self, d):
day_of_year = datetime.datetime.now().timetuple().tm_yday
T_hr = d['temp']
t_dew = float(d["dew_point"])
pressure = d['pressure']
RH_hr = d['humidity']
u_2 = d['wind_speed']
#print("CALCULATE_FAO56:")
#print("T_hr: {}".format(T_hr))
#print("t_dew: {}".format(t_dew))
#print("RH_hr: {}".format(RH_hr))
#print("u_2: {}".format(u_2))
#print("pressure: {}".format(pressure))
fao56 = self.estimate_fao56_hourly(day_of_year,
T_hr,
t_dew,
self.elevation,
LAT,
RH_hr,
u_2,
pressure)
return fao56
def estimate_fao56_daily(self, day_of_year,
temp_c,
temp_c_min,
temp_c_max,
tdew,
elevation,
latitude,
rh,
wind_m_s,
atmos_pres):
""" Estimate fao56 from weather """
sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude),
pyeto.sol_dec(day_of_year))
daylight_hours = pyeto.daylight_hours(sha)
sunshine_hours = 0.8 * daylight_hours
ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
et_rad = pyeto.et_rad(pyeto.deg2rad(latitude),
pyeto.sol_dec(day_of_year), sha, ird)
sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours,
et_rad)
net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23)
cs_rad = pyeto.cs_rad(elevation, et_rad)
avp = pyeto.avp_from_tdew(tdew)
net_out_lw_rad = pyeto.net_out_lw_rad(pyeto.convert.celsius2kelvin(
temp_c_min),
pyeto.convert.celsius2kelvin(
temp_c_max),
sol_rad,
cs_rad,
avp
)
net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad)
eto = pyeto.fao56_penman_monteith(
net_rad=net_rad,
t=pyeto.convert.celsius2kelvin(temp_c),
ws=wind_m_s,
svp=pyeto.svp_from_t(temp_c),
avp=avp,
delta_svp=pyeto.delta_svp(temp_c),
psy=pyeto.psy_const(atmos_pres))
return eto
def calculate_fao56_daily(self, d):
day_of_year = datetime.datetime.now().timetuple().tm_yday
t_day = d['temp']["day"]
t_min = d['temp']['min']
t_max = d['temp']['max']
t_dew = float(d["dew_point"])
pressure = d['pressure']
RH_hr = d['humidity']
u_2 = d['wind_speed']
#print("CALCULATE_FAO56:")
#print("t_day: {}".format(t_day))
#print("t_min: {}".format(t_min))
#print("t_max: {}".format(t_max))
#print("t_dew: {}".format(t_dew))
#print("RH_hr: {}".format(RH_hr))
#print("u_2: {}".format(u_2))
#print("pressure: {}".format(pressure))
fao56 = self.estimate_fao56_daily(day_of_year,
t_day,
t_min,
t_max,
t_dew,
self.elevation,
LAT,
RH_hr,
u_2,
pressure)
return fao56
def update_ev(self, d):
factor = self.calculate_ev_fao56_factor(d)
if factor > 0.0:
self.fao56 += factor * self.calculate_fao56_hourly(d)
print("Factor: {}, FAO56: {}".format(factor, self.fao56))
def calculate_ev(self, d):
self.fao56_day = self.calculate_fao56_daily(d)
def show_value(self, value, entity):
if MODE == "metric":
return value
else:
if entity == "mm":
return value * MM_TO_INCH_FACTOR
else:
return null
def update(self):
d = self.get_data()
#print(d)
#hour-based
#print("HOUR-BASED")
# update the precipitation based on current situation
#self.update_precipitation_current(d["current"])
# update the EV FAO56 value
# divide by # hours to get the average value for the day
#self.update_ev(d["current"])
#print("END OF HOUR BASED")
# calculations on day-basis
#print("DAY BASED")
self.calculate_precipitation(d["daily"][0])
self.calculate_ev(d["daily"][0])
#print("END OF DAY BASED")
#test hargreaves equation
#lat_rad = pyeto.deg2rad(LAT)
#day_of_year = datetime.datetime.now().timetuple().tm_yday
#sol_dec = pyeto.sol_dec(day_of_year)
#sha = pyeto.sunset_hour_angle(lat_rad, sol_dec)
#ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
#et_rad = pyeto.et_rad(lat_rad, sol_dec, sha, ird)
#t_min = d["daily"][0]["temp"]["min"]
#t_max = d["daily"][0]["temp"]["max"]
#t_mean = (t_min+t_max)/2.0
#et_hargreaves = pyeto.hargreaves(t_min, t_max, t_mean, et_rad)
#print("hargreaves: {}".format(et_hargreaves))
#test thornthwaite equation
#lat_rad = pyeto.deg2rad(LAT)
#current_year = datetime.datetime.now().year
#mmdlh = pyeto.monthly_mean_daylight_hours(lat_rad, current_year)
#monthly_t = [4.5,5.5,7.5,9.5,13.0,15.5,17.5,18.5,15.0,11.0,6.5,4.0]
#et_thornthwaite = pyeto.thornthwaite(monthly_t, mmdlh)
#print("thornthwaite: {}".format(et_thornthwaite))
self.bucketDelta = self.rain_day + self.snow_day - self.fao56_day
# calculate adjusted run time (minutes per day)
#self.adjusted_run_time = [round(x * self.base_schedule_index) for x in self.water_budgets]
print("FAO56_day: {}".format(self.show_value(self.fao56_day, "mm")))
print("RAIN TODAY: {}".format(self.show_value(self.rain_day, "mm")))
print("SNOW TODAY: {}".format(self.show_value(self.snow_day, "mm")))
print("Bucket Delta: {}".format(self.show_value(self.bucketDelta,
"mm")))
if(self.bucketDelta >= 0):
#no need to irrigate
print("BucketDelta >= 0, no need to irrigate")
else:
# calculate water budget for today (%)
self.water_budget = abs(self.bucketDelta) / self.peak_ET
# calculate the adjusted run time for today (minutes)
self.adjusted_run_time = round(self.water_budget * self.base_schedule_index)
print("BucketDelta < 0, irrigating for {} minutes!".format(self.adjusted_run_time))
#open the irrigation valve for self.adjusted_run_time minutes.
if len(sys.argv) < 10:
print("test.py [apikey for OpenWeatherMap] [Latitude] [Longitude] [Elevation] [metric|US] [JAN_ET,FEB_ET,MAR_ET,APR_ET,MAY_ET,JUN_ET,JUL_ET,AUG_ET,SEP_ET,OCT_ET,NOV_ET,DEC_ET] [number of sprinklers] [flow per sprinkler (gallon or liter per minute] [area (m2 or sq ft)]")
print("To get the monthly ET values use http://www.rainmaster.com/historicET.aspx, http://wcatlas.iwmi.org/results.asp or another source.")
print("Refer to documentation on your sprinklers to get flow per sprinkler.")
sys.exit(0)
else:
APIKEY = sys.argv[1]
LAT = float(sys.argv[2])
LON = float(sys.argv[3])
ELEVATION = float(sys.argv[4])
MODE = sys.argv[5].lower()
MONTHLY_ET = [float(x) for x in sys.argv[6].split(',')]
NUM_SPRINKLERS = int(sys.argv[7])
FLOW = float(sys.argv[8])
AREA = float(sys.argv[9])
#OWM_URL = "https://api.openweathermap.org/data/2.5/weather?units=metric&lat={}&lon={}&appid={}"
OWM_URL = "https://api.openweathermap.org/data/2.5/onecall?units=metric&lat={}&lon={}&appid={}"
sit = Smart_Irrigation_Test()
sit.update()