-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcombined_app.py
189 lines (136 loc) · 5.8 KB
/
combined_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from flask import Flask, request, render_template, jsonify
import joblib
import pandas as pd
import random
import csv
import numpy as np
app = Flask(__name__)
gas_model = joblib.load('gas_model.joblib')
steam_model = joblib.load('steam_model.joblib')
data = pd.read_csv("datasets\Folds5x2_pp.csv")
ANOMALY_THRESHOLD = 150
def read_dataset():
with open('datasets\Anamoly.csv', 'r') as csvfile:
csv_reader = csv.reader(csvfile)
# Skip the header row if present
next(csv_reader)
for row in csv_reader:
yield list(map(float, row))
dataset_generator = read_dataset()
@app.route('/')
def index():
return render_template('random.html')
@app.route('/anomaly')
def anomaly():
return render_template("anomaly.html")
@app.route('/predict', methods=['POST'])
def predict():
try:
random_row = data.sample(n=1, random_state=random.seed()).values[0]
CT_gas, V_gas, AP_gas, RH_gas, RPM_GAS_gas, EX_TEMP_gas, RPM_STEAM, STEAM_PRESSURE, WATER_FR, POWER_1, POWER_2 = random_row
user_input_gas = [[CT_gas, V_gas, AP_gas, RH_gas, RPM_GAS_gas, EX_TEMP_gas]]
user_input_steam = [[EX_TEMP_gas, RPM_STEAM, STEAM_PRESSURE, WATER_FR]]
predicted_ep_gas = gas_model.predict(user_input_gas)
predicted_ep_steam = steam_model.predict(user_input_steam)
response_data = {
'CT_gas': CT_gas,
'V_gas': V_gas,
'AP_gas': AP_gas,
'RH_gas': RH_gas,
'RPM_GAS_gas': RPM_GAS_gas,
'EX_TEMP_gas': EX_TEMP_gas,
'predicted_ep_gas': float(predicted_ep_gas[0]),
'RPM_STEAM': RPM_STEAM,
'STEAM_PRESSURE': STEAM_PRESSURE,
'WATER_FR': WATER_FR,
'POWER_1': POWER_1,
'POWER_2': POWER_2,
'predicted_ep_steam': float(predicted_ep_steam[0])
}
return jsonify(response_data)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/predict_gas_custom', methods=['POST'])
def predict_gas_custom():
try:
data = request.json
ct = data['ct']
v = data['v']
ap = data['ap']
rh = data['rh']
rpm_gas = data['rpm_gas']
ex_temp_gas = data['ex_temp_gas']
input_data = np.array([ct, v, ap, rh, rpm_gas, ex_temp_gas]).reshape(1, -1)
predicted_gas_ep = gas_model.predict(input_data)[0][0]
predicted_gas_ep = float(predicted_gas_ep)
return jsonify({'predicted_gas_ep': predicted_gas_ep})
except Exception as e:
return jsonify({'error': str(e)}), 500 # Return error message with 500 status code
@app.route('/predict_steam_custom', methods=['POST'])
def predict_steam_custom():
try:
data = request.json
ex_temp = data['ex_temp']
rpm_steam = data['rpm_steam']
steam_pressure = data['steam_pressure']
water_fr = data['water_fr']
input_data = np.array([ex_temp, rpm_steam, steam_pressure, water_fr]).reshape(1, -1)
predicted_steam_ep = steam_model.predict(input_data)[0][0]
predicted_steam_ep = float(predicted_steam_ep)
return jsonify({'predicted_steam_ep': predicted_steam_ep})
except Exception as e:
return jsonify({'error': str(e)})
@app.route('/predict_random_gas', methods=['GET'])
def predict_random_gas_route():
try:
gas_output, gas_inputs = predict_random_gas(gas_model)
return jsonify({'random_gas_ep': gas_output})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/predict_random_steam', methods=['GET'])
def predict_random_steam_route():
try:
steam_output, steam_inputs = predict_random_steam(steam_model)
return jsonify({'random_steam_ep': steam_output})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/predict_anomaly', methods=['POST'])
def predict_anomaly():
global dataset_generator
try:
try:
row = next(dataset_generator)
except StopIteration:
dataset_generator = read_dataset()
row = next(dataset_generator)
CT_gas,V_gas,AP_gas,RH_gas,RPM_GAS_gas,EX_TEMP_gas,RPM_STEAM,STEAM_PRESSURE,WATER_FR,POWER_1,POWER_2= row
user_input_gas = [[CT_gas, V_gas, AP_gas, RH_gas, RPM_GAS_gas, EX_TEMP_gas]]
user_input_steam = [[EX_TEMP_gas, RPM_STEAM, STEAM_PRESSURE, WATER_FR]]
predicted_ep_gas = gas_model.predict(user_input_gas)[0]
predicted_ep_steam = steam_model.predict(user_input_steam)[0]
predicted_ep_gas = predicted_ep_gas.tolist()
predicted_ep_steam = predicted_ep_steam.tolist()
anomaly_gas = bool(abs(predicted_ep_gas[0] - POWER_1) > ANOMALY_THRESHOLD)
anomaly_steam = bool(abs(predicted_ep_steam[0] - POWER_2) > ANOMALY_THRESHOLD)
response_data = {
'CT_gas': CT_gas,
'V_gas': V_gas,
'AP_gas': AP_gas,
'RH_gas': RH_gas,
'RPM_GAS_gas': RPM_GAS_gas,
'EX_TEMP_gas': EX_TEMP_gas,
'predicted_ep_gas': float(predicted_ep_gas[0]),
'RPM_STEAM': RPM_STEAM,
'STEAM_PRESSURE': STEAM_PRESSURE,
'WATER_FR': WATER_FR,
'POWER_1': POWER_1,
'POWER_2': POWER_2,
'predicted_ep_steam': float(predicted_ep_steam[0]),
'anomaly_gas': anomaly_gas,
'anomaly_steam': anomaly_steam
}
return jsonify(response_data)
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True)