forked from jjery2243542/adaptive_voice_conversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
395 lines (365 loc) · 15.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as ag
import numpy as np
from math import ceil
from functools import reduce
from torch.nn.utils import spectral_norm
from utils import cc
class DummyEncoder(object):
def __init__(self, encoder):
self.encoder = encoder
def load(self, target_network):
self.encoder.load_state_dict(target_network.state_dict())
def __call__(self, x):
return self.encoder(x)
def pad_layer(inp, layer, pad_type='reflect'):
kernel_size = layer.kernel_size[0]
if kernel_size % 2 == 0:
pad = (kernel_size//2, kernel_size//2 - 1)
else:
pad = (kernel_size//2, kernel_size//2)
# padding
inp = F.pad(inp,
pad=pad,
mode=pad_type)
out = layer(inp)
return out
def pad_layer_2d(inp, layer, pad_type='reflect'):
kernel_size = layer.kernel_size
if kernel_size[0] % 2 == 0:
pad_lr = [kernel_size[0]//2, kernel_size[0]//2 - 1]
else:
pad_lr = [kernel_size[0]//2, kernel_size[0]//2]
if kernel_size[1] % 2 == 0:
pad_ud = [kernel_size[1]//2, kernel_size[1]//2 - 1]
else:
pad_ud = [kernel_size[1]//2, kernel_size[1]//2]
pad = tuple(pad_lr + pad_ud)
# padding
inp = F.pad(inp,
pad=pad,
mode=pad_type)
out = layer(inp)
return out
def pixel_shuffle_1d(inp, scale_factor=2):
batch_size, channels, in_width = inp.size()
channels //= scale_factor
out_width = in_width * scale_factor
inp_view = inp.contiguous().view(batch_size, channels, scale_factor, in_width)
shuffle_out = inp_view.permute(0, 1, 3, 2).contiguous()
shuffle_out = shuffle_out.view(batch_size, channels, out_width)
return shuffle_out
def upsample(x, scale_factor=2):
x_up = F.interpolate(x, scale_factor=scale_factor, mode='nearest')
return x_up
def flatten(x):
out = x.contiguous().view(x.size(0), x.size(1) * x.size(2))
return out
def concat_cond(x, cond):
# x = [batch_size, x_channels, length]
# cond = [batch_size, c_channels]
cond = cond.unsqueeze(dim=2)
cond = cond.expand(*cond.size()[:-1], x.size(-1))
out = torch.cat([x, cond], dim=1)
return out
def append_cond(x, cond):
# x = [batch_size, x_channels, length]
# cond = [batch_size, x_channels * 2]
p = cond.size(1) // 2
mean, std = cond[:, :p], cond[:, p:]
out = x * std.unsqueeze(dim=2) + mean.unsqueeze(dim=2)
return out
def conv_bank(x, module_list, act, pad_type='reflect'):
outs = []
for layer in module_list:
out = act(pad_layer(x, layer, pad_type))
outs.append(out)
out = torch.cat(outs + [x], dim=1)
return out
def get_act(act):
if act == 'relu':
return nn.ReLU()
elif act == 'lrelu':
return nn.LeakyReLU()
else:
return nn.ReLU()
class MLP(nn.Module):
def __init__(self, c_in, c_h, n_blocks, act, sn):
super(MLP, self).__init__()
self.act = get_act(act)
self.n_blocks = n_blocks
f = spectral_norm if sn else lambda x: x
self.in_dense_layer = f(nn.Linear(c_in, c_h))
self.first_dense_layers = nn.ModuleList([f(nn.Linear(c_h, c_h)) for _ in range(n_blocks)])
self.second_dense_layers = nn.ModuleList([f(nn.Linear(c_h, c_h)) for _ in range(n_blocks)])
def forward(self, x):
h = self.in_dense_layer(x)
for l in range(self.n_blocks):
y = self.first_dense_layers[l](h)
y = self.act(y)
y = self.second_dense_layers[l](y)
y = self.act(y)
h = h + y
return h
class Prenet(nn.Module):
def __init__(self, c_in, c_h, c_out,
kernel_size, n_conv_blocks,
subsample, act, dropout_rate):
super(Prenet, self).__init__()
self.act = get_act(act)
self.subsample = subsample
self.n_conv_blocks = n_conv_blocks
self.in_conv_layer = nn.Conv2d(1, c_h, kernel_size=kernel_size)
self.first_conv_layers = nn.ModuleList([nn.Conv2d(c_h, c_h, kernel_size=kernel_size) for _ \
in range(n_conv_blocks)])
self.second_conv_layers = nn.ModuleList([nn.Conv2d(c_h, c_h, kernel_size=kernel_size, stride=sub)
for sub, _ in zip(subsample, range(n_conv_blocks))])
output_size = c_in
for l, sub in zip(range(n_conv_blocks), self.subsample):
output_size = ceil(output_size / sub)
self.out_conv_layer = nn.Conv1d(c_h * output_size, c_out, kernel_size=1)
self.dropout_layer = nn.Dropout(p=dropout_rate)
self.norm_layer = nn.InstanceNorm2d(c_h, affine=False)
def forward(self, x):
# reshape x to 4D
x = x.contiguous().view(x.size(0), 1, x.size(1), x.size(2))
out = pad_layer_2d(x, self.in_conv_layer)
out = self.act(out)
out = self.norm_layer(out)
for l in range(self.n_conv_blocks):
y = pad_layer_2d(out, self.first_conv_layers[l])
y = self.act(y)
y = self.norm_layer(y)
y = self.dropout_layer(y)
y = pad_layer_2d(y, self.second_conv_layers[l])
y = self.act(y)
y = self.norm_layer(y)
y = self.dropout_layer(y)
if self.subsample[l] > 1:
out = F.avg_pool2d(out, kernel_size=self.subsample[l], ceil_mode=True)
out = y + out
out = out.contiguous().view(out.size(0), out.size(1) * out.size(2), out.size(3))
out = pad_layer(out, self.out_conv_layer)
out = self.act(out)
return out
class Postnet(nn.Module):
def __init__(self, c_in, c_h, c_out, c_cond,
kernel_size, n_conv_blocks,
upsample, act, sn):
super(Postnet, self).__init__()
self.act = get_act(act)
self.upsample = upsample
self.c_h = c_h
self.n_conv_blocks = n_conv_blocks
f = spectral_norm if sn else lambda x: x
total_upsample = reduce(lambda x, y: x*y, upsample)
self.in_conv_layer = f(nn.Conv1d(c_in, c_h * c_out // total_upsample, kernel_size=1))
self.first_conv_layers = nn.ModuleList([f(nn.Conv2d(c_h, c_h, kernel_size=kernel_size)) for _ \
in range(n_conv_blocks)])
self.second_conv_layers = nn.ModuleList([f(nn.Conv2d(c_h, c_h*up*up, kernel_size=kernel_size))
for up, _ in zip(upsample, range(n_conv_blocks))])
self.out_conv_layer = f(nn.Conv2d(c_h, 1, kernel_size=1))
self.conv_affine_layers = nn.ModuleList(
[f(nn.Linear(c_cond, c_h * 2)) for _ in range(n_conv_blocks*2)])
self.norm_layer = nn.InstanceNorm2d(c_h, affine=False)
self.ps = nn.PixelShuffle(max(upsample))
def forward(self, x, cond):
out = pad_layer(x, self.in_conv_layer)
out = out.contiguous().view(out.size(0), self.c_h, out.size(1) // self.c_h, out.size(2))
for l in range(self.n_conv_blocks):
y = pad_layer_2d(out, self.first_conv_layers[l])
y = self.act(y)
y = self.norm_layer(y)
y = append_cond_2d(y, self.conv_affine_layers[l*2](cond))
y = pad_layer_2d(y, self.second_conv_layers[l])
y = self.act(y)
if self.upsample[l] > 1:
y = self.ps(y)
y = self.norm_layer(y)
y = append_cond_2d(y, self.conv_affine_layers[l*2+1](cond))
out = y + upsample(out, scale_factor=(self.upsample[l], self.upsample[l]))
else:
y = self.norm_layer(y)
y = append_cond(y, self.conv_affine_layers[l*2+1](cond))
out = y + out
out = self.out_conv_layer(out)
out = out.squeeze(dim=1)
return out
class SpeakerEncoder(nn.Module):
def __init__(self, c_in, c_h, c_out, kernel_size,
bank_size, bank_scale, c_bank,
n_conv_blocks, n_dense_blocks,
subsample, act, dropout_rate):
super(SpeakerEncoder, self).__init__()
self.c_in = c_in
self.c_h = c_h
self.c_out = c_out
self.kernel_size = kernel_size
self.n_conv_blocks = n_conv_blocks
self.n_dense_blocks = n_dense_blocks
self.subsample = subsample
self.act = get_act(act)
self.conv_bank = nn.ModuleList(
[nn.Conv1d(c_in, c_bank, kernel_size=k) for k in range(bank_scale, bank_size + 1, bank_scale)])
in_channels = c_bank * (bank_size // bank_scale) + c_in
self.in_conv_layer = nn.Conv1d(in_channels, c_h, kernel_size=1)
self.first_conv_layers = nn.ModuleList([nn.Conv1d(c_h, c_h, kernel_size=kernel_size) for _ \
in range(n_conv_blocks)])
self.second_conv_layers = nn.ModuleList([nn.Conv1d(c_h, c_h, kernel_size=kernel_size, stride=sub)
for sub, _ in zip(subsample, range(n_conv_blocks))])
self.pooling_layer = nn.AdaptiveAvgPool1d(1)
self.first_dense_layers = nn.ModuleList([nn.Linear(c_h, c_h) for _ in range(n_dense_blocks)])
self.second_dense_layers = nn.ModuleList([nn.Linear(c_h, c_h) for _ in range(n_dense_blocks)])
self.output_layer = nn.Linear(c_h, c_out)
self.dropout_layer = nn.Dropout(p=dropout_rate)
def conv_blocks(self, inp):
out = inp
# convolution blocks
for l in range(self.n_conv_blocks):
y = pad_layer(out, self.first_conv_layers[l])
y = self.act(y)
y = self.dropout_layer(y)
y = pad_layer(y, self.second_conv_layers[l])
y = self.act(y)
y = self.dropout_layer(y)
if self.subsample[l] > 1:
out = F.avg_pool1d(out, kernel_size=self.subsample[l], ceil_mode=True)
out = y + out
return out
def dense_blocks(self, inp):
out = inp
# dense layers
for l in range(self.n_dense_blocks):
y = self.first_dense_layers[l](out)
y = self.act(y)
y = self.dropout_layer(y)
y = self.second_dense_layers[l](y)
y = self.act(y)
y = self.dropout_layer(y)
out = y + out
return out
def forward(self, x):
out = conv_bank(x, self.conv_bank, act=self.act)
# dimension reduction layer
out = pad_layer(out, self.in_conv_layer)
out = self.act(out)
# conv blocks
out = self.conv_blocks(out)
# avg pooling
out = self.pooling_layer(out).squeeze(2)
# dense blocks
out = self.dense_blocks(out)
out = self.output_layer(out)
return out
class ContentEncoder(nn.Module):
def __init__(self, c_in, c_h, c_out, kernel_size,
bank_size, bank_scale, c_bank,
n_conv_blocks, subsample,
act, dropout_rate):
super(ContentEncoder, self).__init__()
self.n_conv_blocks = n_conv_blocks
self.subsample = subsample
self.act = get_act(act)
self.conv_bank = nn.ModuleList(
[nn.Conv1d(c_in, c_bank, kernel_size=k) for k in range(bank_scale, bank_size + 1, bank_scale)])
in_channels = c_bank * (bank_size // bank_scale) + c_in
self.in_conv_layer = nn.Conv1d(in_channels, c_h, kernel_size=1)
self.first_conv_layers = nn.ModuleList([nn.Conv1d(c_h, c_h, kernel_size=kernel_size) for _ \
in range(n_conv_blocks)])
self.second_conv_layers = nn.ModuleList([nn.Conv1d(c_h, c_h, kernel_size=kernel_size, stride=sub)
for sub, _ in zip(subsample, range(n_conv_blocks))])
self.norm_layer = nn.InstanceNorm1d(c_h, affine=False)
self.mean_layer = nn.Conv1d(c_h, c_out, kernel_size=1)
self.std_layer = nn.Conv1d(c_h, c_out, kernel_size=1)
self.dropout_layer = nn.Dropout(p=dropout_rate)
def forward(self, x):
out = conv_bank(x, self.conv_bank, act=self.act)
# dimension reduction layer
out = pad_layer(out, self.in_conv_layer)
out = self.norm_layer(out)
out = self.act(out)
out = self.dropout_layer(out)
# convolution blocks
for l in range(self.n_conv_blocks):
y = pad_layer(out, self.first_conv_layers[l])
y = self.norm_layer(y)
y = self.act(y)
y = self.dropout_layer(y)
y = pad_layer(y, self.second_conv_layers[l])
y = self.norm_layer(y)
y = self.act(y)
y = self.dropout_layer(y)
if self.subsample[l] > 1:
out = F.avg_pool1d(out, kernel_size=self.subsample[l], ceil_mode=True)
out = y + out
mu = pad_layer(out, self.mean_layer)
log_sigma = pad_layer(out, self.std_layer)
return mu, log_sigma
class Decoder(nn.Module):
def __init__(self,
c_in, c_cond, c_h, c_out,
kernel_size,
n_conv_blocks, upsample, act, sn, dropout_rate):
super(Decoder, self).__init__()
self.n_conv_blocks = n_conv_blocks
self.upsample = upsample
self.act = get_act(act)
f = spectral_norm if sn else lambda x: x
self.in_conv_layer = f(nn.Conv1d(c_in, c_h, kernel_size=1))
self.first_conv_layers = nn.ModuleList([f(nn.Conv1d(c_h, c_h, kernel_size=kernel_size)) for _ \
in range(n_conv_blocks)])
self.second_conv_layers = nn.ModuleList(\
[f(nn.Conv1d(c_h, c_h * up, kernel_size=kernel_size)) \
for _, up in zip(range(n_conv_blocks), self.upsample)])
self.norm_layer = nn.InstanceNorm1d(c_h, affine=False)
self.conv_affine_layers = nn.ModuleList(
[f(nn.Linear(c_cond, c_h * 2)) for _ in range(n_conv_blocks*2)])
self.out_conv_layer = f(nn.Conv1d(c_h, c_out, kernel_size=1))
self.dropout_layer = nn.Dropout(p=dropout_rate)
def forward(self, z, cond):
out = pad_layer(z, self.in_conv_layer)
out = self.norm_layer(out)
out = self.act(out)
out = self.dropout_layer(out)
# convolution blocks
for l in range(self.n_conv_blocks):
y = pad_layer(out, self.first_conv_layers[l])
y = self.norm_layer(y)
y = append_cond(y, self.conv_affine_layers[l*2](cond))
y = self.act(y)
y = self.dropout_layer(y)
y = pad_layer(y, self.second_conv_layers[l])
if self.upsample[l] > 1:
y = pixel_shuffle_1d(y, scale_factor=self.upsample[l])
y = self.norm_layer(y)
y = append_cond(y, self.conv_affine_layers[l*2+1](cond))
y = self.act(y)
y = self.dropout_layer(y)
if self.upsample[l] > 1:
out = y + upsample(out, scale_factor=self.upsample[l])
else:
out = y + out
out = pad_layer(out, self.out_conv_layer)
return out
class AE(nn.Module):
def __init__(self, config):
super(AE, self).__init__()
self.speaker_encoder = SpeakerEncoder(**config['SpeakerEncoder'])
self.content_encoder = ContentEncoder(**config['ContentEncoder'])
self.decoder = Decoder(**config['Decoder'])
def forward(self, x):
emb = self.speaker_encoder(x)
mu, log_sigma = self.content_encoder(x)
eps = log_sigma.new(*log_sigma.size()).normal_(0, 1)
dec = self.decoder(mu + torch.exp(log_sigma / 2) * eps, emb)
return mu, log_sigma, emb, dec
def inference(self, x, x_cond):
emb = self.speaker_encoder(x_cond)
mu, _ = self.content_encoder(x)
dec = self.decoder(mu, emb)
return dec
def get_speaker_embeddings(self, x):
emb = self.speaker_encoder(x)
return emb