forked from jjery2243542/adaptive_voice_conversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
58 lines (47 loc) · 1.75 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from torch.utils.data import Dataset
import os
import pickle
import json
import numpy as np
import torch
from torch.utils.data import DataLoader
class CollateFn(object):
def __init__(self, frame_size):
self.frame_size = frame_size
def make_frames(self, tensor):
out = tensor.view(tensor.size(0), tensor.size(1) // self.frame_size, self.frame_size * tensor.size(2))
out = out.transpose(1, 2)
return out
def __call__(self, l):
data_tensor = torch.from_numpy(np.array(l))
segment = self.make_frames(data_tensor)
return segment
def get_data_loader(dataset, batch_size, frame_size, shuffle=True, num_workers=4, drop_last=False):
_collate_fn = CollateFn(frame_size=frame_size)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, collate_fn=_collate_fn, pin_memory=True)
return dataloader
class SequenceDataset(Dataset):
def __init__(self, data):
self.data = data
self.utt_ids = list(self.data.keys())
def __getitem__(self, ind):
utt_id = self.utt_ids[ind]
ret = self.data[utt_id].transpose()
return ret
def __len__(self):
return len(self.utt_ids)
class PickleDataset(Dataset):
def __init__(self, pickle_path, sample_index_path, segment_size):
with open(pickle_path, 'rb') as f:
self.data = pickle.load(f)
with open(sample_index_path, 'r') as f:
self.indexes = json.load(f)
self.segment_size = segment_size
def __getitem__(self, ind):
utt_id, t = self.indexes[ind]
segment = self.data[utt_id][t:t + self.segment_size]
return segment
def __len__(self):
return len(self.indexes)