forked from SamuelBroughton/StarGAN-Voice-Conversion-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
executable file
·327 lines (266 loc) · 14.7 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from model import Generator
from model import Discriminator
import torch
import torch.nn.functional as F
from os.path import join, basename
import time
import datetime
from data_loader import to_categorical
from utils import *
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
class Solver(object):
"""Solver for training and testing StarGAN."""
def __init__(self, train_loader, test_loader, config):
"""Initialize configurations."""
# Data loader.
self.train_loader = train_loader
self.test_loader = test_loader
self.sampling_rate = config.sampling_rate
# Model configurations.
self.num_speakers = config.num_speakers
self.lambda_rec = config.lambda_rec
self.lambda_gp = config.lambda_gp
self.lambda_id = config.lambda_id
# Training configurations.
self.batch_size = config.batch_size
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.n_critic = config.n_critic
self.beta1 = config.beta1
self.beta2 = config.beta2
self.resume_iters = config.resume_iters
# Test configurations.
self.test_iters = config.test_iters
# Miscellaneous.
self.logger = SummaryWriter(log_dir=config.log_dir)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
# Step size.
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.lr_update_step = config.lr_update_step
# Build the model and tensorboard.
self.build_model()
def build_model(self):
"""Create a generator and a discriminator."""
self.generator = Generator(num_speakers=self.num_speakers)
self.discriminator = Discriminator(num_speakers=self.num_speakers)
self.g_optimizer = torch.optim.Adam(self.generator.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.discriminator.parameters(), self.d_lr, [self.beta1, self.beta2])
self.print_network(self.generator, 'Generator')
self.print_network(self.discriminator, 'Discriminator')
self.generator.to(self.device)
self.discriminator.to(self.device)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def log_loss_tensorboard(self, loss_dict, step):
for k, v in loss_dict.items():
self.logger.add_scalar(k, v, step)
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
g_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
d_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
self.generator.load_state_dict(torch.load(g_path, map_location=lambda storage, loc: storage))
self.discriminator.load_state_dict(torch.load(d_path, map_location=lambda storage, loc: storage))
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def reset_grad(self):
"""Reset the gradientgradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def label2onehot(self, labels, dim):
"""Convert label indices to one-hot vectors."""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out
def sample_spk_c(self, size):
spk_c = np.random.randint(0, self.num_speakers, size=size)
spk_c_cat = to_categorical(spk_c, self.num_speakers)
return torch.LongTensor(spk_c), torch.FloatTensor(spk_c_cat)
def classification_loss(self, logit, target):
"""Compute softmax cross entropy loss."""
return F.cross_entropy(logit, target)
def load_wav(self, wavfile, sr=16000):
wav, _ = librosa.load(wavfile, sr=sr, mono=True)
return wav_padding(wav, sr=16000, frame_period=5, multiple = 4)
def train(self):
"""Train StarGAN."""
# Set data loader.
train_loader = self.train_loader
data_iter = iter(train_loader)
# Read a batch of testdata
test_wavfiles = self.test_loader.get_batch_test_data(batch_size=4)
test_wavs = [self.load_wav(wavfile) for wavfile in test_wavfiles]
# Determine whether do copysynthesize when first do training-time conversion test.
cpsyn_flag = [True, False][0]
# f0, timeaxis, sp, ap = world_decompose(wav = wav, fs = sampling_rate, frame_period = frame_period)
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
# Start training from scratch or resume training.
start_iters = 0
if self.resume_iters is not None:
print("resuming step %d ..."% self.resume_iters)
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch labels.
try:
mc_real, spk_label_org, spk_c_org = next(data_iter)
except:
data_iter = iter(train_loader)
mc_real, spk_label_org, spk_c_org = next(data_iter)
mc_real.unsqueeze_(1) # (B, D, T) -> (B, 1, D, T) for conv2d
# Generate target domain labels randomly.
# spk_label_trg: int, spk_c_trg:one-hot representation
spk_label_trg, spk_c_trg = self.sample_spk_c(mc_real.size(0))
mc_real = mc_real.to(self.device) # Input mc.
spk_label_org = spk_label_org.to(self.device) # Original spk labels.
spk_c_org = spk_c_org.to(self.device) # Original spk one-hot.
spk_label_trg = spk_label_trg.to(self.device) # Target spk labels.
spk_c_trg = spk_c_trg.to(self.device) # Target spk one-hot.
# =================================================================================== #
# 2. Train the Discriminator #
# =================================================================================== #
# Compute loss with real mc feats.
d_out_src = self.discriminator(mc_real, spk_c_trg, spk_c_org)
d_loss_real = torch.mean((1.0 - d_out_src) ** 2)
# Compute loss with fake mc feats.
mc_fake = self.generator(mc_real, spk_c_trg)
d_out_fake = self.discriminator(mc_fake.detach(), spk_c_org, spk_c_trg)
d_loss_fake = torch.mean(d_out_fake ** 2)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake # + self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss'] = d_loss.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i+1) % self.n_critic == 0:
# Original-to-target domain.
mc_fake = self.generator(mc_real, spk_c_trg)
g_out_src = self.discriminator(mc_fake, spk_c_org, spk_c_trg)
g_loss_fake = torch.mean((1.0 - g_out_src) ** 2)
# Target-to-original domain. Cycle-consistent.
mc_reconst = self.generator(mc_fake, spk_c_org)
g_loss_rec = torch.mean(torch.abs(mc_real - mc_reconst))
# Original-to-original, Id mapping loss. Mapping
mc_fake_id = self.generator(mc_real, spk_c_org)
g_loss_id = torch.mean(torch.abs(mc_real - mc_fake_id))
# Backward and optimize.
if i > 10000:
self.lambda_id = 0
g_loss = g_loss_fake \
+ self.lambda_rec * g_loss_rec \
+ self.lambda_id * g_loss_id
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_rec'] = g_loss_rec.item()
loss['G/loss_id'] = g_loss_id.item()
loss['G/loss'] = g_loss.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
self.log_loss_tensorboard(loss, i+1)
if (i+1) % self.sample_step == 0:
sampling_rate = 16000
num_mcep = 36
frame_period = 5
with torch.no_grad():
for idx, wav in tqdm(enumerate(test_wavs)):
wav_name = basename(test_wavfiles[idx])
# print(wav_name)
f0, timeaxis, sp, ap = world_decompose(wav=wav, fs=sampling_rate, frame_period=frame_period)
f0_converted = pitch_conversion(f0=f0,
mean_log_src=self.test_loader.logf0s_mean_src, std_log_src=self.test_loader.logf0s_std_src,
mean_log_target=self.test_loader.logf0s_mean_trg, std_log_target=self.test_loader.logf0s_std_trg)
coded_sp = world_encode_spectral_envelop(sp=sp, fs=sampling_rate, dim=num_mcep)
coded_sp_norm = (coded_sp - self.test_loader.mcep_mean_src) / self.test_loader.mcep_std_src
coded_sp_norm_tensor = torch.FloatTensor(coded_sp_norm.T).unsqueeze_(0).unsqueeze_(1).to(self.device)
conds = torch.FloatTensor(self.test_loader.spk_c_trg).to(self.device)
# Include org_conds if using src and target domain codes.
# org_conds = torch.FloatTensor(self.test_loader.spk_c_org).to(self.device)
coded_sp_converted_norm = self.generator(coded_sp_norm_tensor, conds).data.cpu().numpy()
coded_sp_converted = np.squeeze(coded_sp_converted_norm).T * self.test_loader.mcep_std_trg + self.test_loader.mcep_mean_trg
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
# decoded_sp_converted = world_decode_spectral_envelop(coded_sp = coded_sp_converted, fs = sampling_rate)
wav_transformed = world_speech_synthesis(f0=f0_converted, coded_sp=coded_sp_converted,
ap=ap, fs=sampling_rate, frame_period=frame_period)
librosa.output.write_wav(
join(self.sample_dir, str(i+1)+'-'+wav_name.split('.')[0]+'-vcto-{}'.format(self.test_loader.trg_spk)+'.wav'), wav_transformed, sampling_rate)
if cpsyn_flag:
wav_cpsyn = world_speech_synthesis(f0=f0, coded_sp=coded_sp,
ap=ap, fs=sampling_rate, frame_period=frame_period)
librosa.output.write_wav(join(self.sample_dir, 'cpsyn-'+wav_name), wav_cpsyn, sampling_rate)
cpsyn_flag = False
# Save model checkpoints.
if (i+1) % self.model_save_step == 0:
g_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
d_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
torch.save(self.generator.state_dict(), g_path)
torch.save(self.discriminator.state_dict(), d_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr)
print('Decayed learning rates, g_lr: {}, d_lr: {}'.format(g_lr, d_lr))