forked from yihanjiang/turboae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterleavers.py
163 lines (109 loc) · 5.06 KB
/
interleavers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
__author__ = 'yihanjiang'
import torch
import torch.nn.functional as F
class Interleaver(torch.nn.Module):
def __init__(self, args, p_array):
super(Interleaver, self).__init__()
self.args = args
self.p_array = torch.LongTensor(p_array).view(len(p_array))
def set_parray(self, p_array):
self.p_array = torch.LongTensor(p_array).view(len(p_array))
def forward(self, inputs):
inputs = inputs.permute(1,0,2)
res = inputs[self.p_array]
res = res.permute(1, 0, 2)
return res
class DeInterleaver(torch.nn.Module):
def __init__(self, args, p_array):
super(DeInterleaver, self).__init__()
self.args = args
self.reverse_p_array = [0 for _ in range(len(p_array))]
for idx in range(len(p_array)):
self.reverse_p_array[p_array[idx]] = idx
self.reverse_p_array = torch.LongTensor(self.reverse_p_array).view(len(p_array))
def set_parray(self, p_array):
self.reverse_p_array = [0 for _ in range(len(p_array))]
for idx in range(len(p_array)):
self.reverse_p_array[p_array[idx]] = idx
self.reverse_p_array = torch.LongTensor(self.reverse_p_array).view(len(p_array))
def forward(self, inputs):
inputs = inputs.permute(1,0,2)
res = inputs[self.reverse_p_array]
res = res.permute(1, 0, 2)
return res
# TBD: change 2D interleavers
# 2D interleavers seems not working well... Don't know why...
class Interleaver2Dold(torch.nn.Module):
def __init__(self, args, p_array):
super(Interleaver2D, self).__init__()
self.args = args
self.p_array = torch.LongTensor(p_array).view(len(p_array))#.view(args.img_size, args.img_size)
def set_parray(self, p_array):
self.p_array = torch.LongTensor(p_array).view(len(p_array))#.view(self.args.img_size, args.img_size)
def forward(self, inputs):
input_shape = inputs.shape
inputs = inputs.view(input_shape[0], input_shape[1], input_shape[2]*input_shape[3])
inputs = inputs.permute(2, 0, 1)
res = inputs[self.p_array]
res = res.permute(1, 2, 0)
res = res.view(input_shape)
return res
class DeInterleaver2Dold(torch.nn.Module):
def __init__(self, args, p_array):
super(DeInterleaver2D, self).__init__()
self.args = args
self.reverse_p_array = [0 for _ in range(len(p_array))]
for idx in range(len(p_array)):
self.reverse_p_array[p_array[idx]] = idx
self.reverse_p_array = torch.LongTensor(self.reverse_p_array).view(self.args.img_size**2)
def set_parray(self, p_array):
self.reverse_p_array = [0 for _ in range(len(p_array))]
for idx in range(len(p_array)):
self.reverse_p_array[p_array[idx]] = idx
self.reverse_p_array = torch.LongTensor(self.reverse_p_array).view(self.args.img_size**2)
def forward(self, inputs):
input_shape = inputs.shape
inputs = inputs.view(input_shape[0], input_shape[1], input_shape[2]* input_shape[3])
inputs = inputs.permute(2,0,1)
res = inputs[self.reverse_p_array]
res = res.permute(1,2,0)
res = res.view(input_shape)
return res
# TBD: change 2D interleavers
# Play with real 2D interleavers: p_array with 2-step interleaving.
class Interleaver2D(torch.nn.Module):
def __init__(self, args, p_array):
super(Interleaver2D, self).__init__()
self.args = args
self.p_array = torch.LongTensor(p_array).view(len(p_array))#.view(args.img_size, args.img_size)
def set_parray(self, p_array):
self.p_array = torch.LongTensor(p_array).view(len(p_array))#.view(self.args.img_size, args.img_size)
def forward(self, inputs):
input_shape = inputs.shape
inputs = inputs.view(input_shape[0], input_shape[1], input_shape[2]*input_shape[3])
inputs = inputs.permute(2, 0, 1)
res = inputs[self.p_array]
res = res.permute(1, 2, 0)
res = res.view(input_shape)
return res
class DeInterleaver2D(torch.nn.Module):
def __init__(self, args, p_array):
super(DeInterleaver2D, self).__init__()
self.args = args
self.reverse_p_array = [0 for _ in range(len(p_array))]
for idx in range(len(p_array)):
self.reverse_p_array[p_array[idx]] = idx
self.reverse_p_array = torch.LongTensor(self.reverse_p_array).view(self.args.img_size**2)
def set_parray(self, p_array):
self.reverse_p_array = [0 for _ in range(len(p_array))]
for idx in range(len(p_array)):
self.reverse_p_array[p_array[idx]] = idx
self.reverse_p_array = torch.LongTensor(self.reverse_p_array).view(self.args.img_size**2)
def forward(self, inputs):
input_shape = inputs.shape
inputs = inputs.view(input_shape[0], input_shape[1], input_shape[2]* input_shape[3])
inputs = inputs.permute(2,0,1)
res = inputs[self.reverse_p_array]
res = res.permute(1,2,0)
res = res.view(input_shape)
return res