forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_gpu_trainer.py
1024 lines (949 loc) · 44 KB
/
neural_gpu_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Neural GPU."""
import math
import os
import random
import sys
import threading
import time
import numpy as np
import tensorflow as tf
import program_utils
import data_utils as data
import neural_gpu as ngpu
import wmt_utils as wmt
tf.app.flags.DEFINE_float("lr", 0.1, "Learning rate.")
tf.app.flags.DEFINE_float("init_weight", 0.8, "Initial weights deviation.")
tf.app.flags.DEFINE_float("max_grad_norm", 4.0, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("cutoff", 1.2, "Cutoff at the gates.")
tf.app.flags.DEFINE_float("curriculum_ppx", 9.9, "Move curriculum if ppl < X.")
tf.app.flags.DEFINE_float("curriculum_seq", 0.3, "Move curriculum if seq < X.")
tf.app.flags.DEFINE_float("dropout", 0.1, "Dropout that much.")
tf.app.flags.DEFINE_float("grad_noise_scale", 0.0, "Gradient noise scale.")
tf.app.flags.DEFINE_float("max_sampling_rate", 0.1, "Maximal sampling rate.")
tf.app.flags.DEFINE_float("length_norm", 0.0, "Length normalization.")
tf.app.flags.DEFINE_float("train_beam_freq", 0.0, "Beam-based training.")
tf.app.flags.DEFINE_float("train_beam_anneal", 20000, "How many steps anneal.")
tf.app.flags.DEFINE_integer("eval_beam_steps", 4, "How many beam steps eval.")
tf.app.flags.DEFINE_integer("batch_size", 32, "Batch size.")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 100, "Steps per epoch.")
tf.app.flags.DEFINE_integer("nmaps", 64, "Number of floats in each cell.")
tf.app.flags.DEFINE_integer("vec_size", 64, "Size of word vectors.")
tf.app.flags.DEFINE_integer("train_data_size", 1000, "Training examples/len.")
tf.app.flags.DEFINE_integer("max_length", 40, "Maximum length.")
tf.app.flags.DEFINE_integer("random_seed", 125459, "Random seed.")
tf.app.flags.DEFINE_integer("nconvs", 2, "How many convolutions / 1 step.")
tf.app.flags.DEFINE_integer("kw", 3, "Kernel width.")
tf.app.flags.DEFINE_integer("kh", 3, "Kernel height.")
tf.app.flags.DEFINE_integer("height", 4, "Height.")
tf.app.flags.DEFINE_integer("mem_size", -1, "Memory size (sqrt)")
tf.app.flags.DEFINE_integer("soft_mem_size", 1024, "Softmax memory this size.")
tf.app.flags.DEFINE_integer("num_gpus", 1, "Number of GPUs to use.")
tf.app.flags.DEFINE_integer("num_replicas", 1, "Number of replicas in use.")
tf.app.flags.DEFINE_integer("beam_size", 1, "Beam size during decoding. "
"If 0, no decoder, the non-extended Neural GPU.")
tf.app.flags.DEFINE_integer("max_target_vocab", 0,
"Maximal size of target vocabulary.")
tf.app.flags.DEFINE_integer("decode_offset", 0, "Offset for decoding.")
tf.app.flags.DEFINE_integer("task", -1, "Task id when running on borg.")
tf.app.flags.DEFINE_integer("nprint", 0, "How many test examples to print out.")
tf.app.flags.DEFINE_integer("eval_bin_print", 3, "How many bins step in eval.")
tf.app.flags.DEFINE_integer("mode", 0, "Mode: 0-train other-decode.")
tf.app.flags.DEFINE_bool("atrous", False, "Whether to use atrous convs.")
tf.app.flags.DEFINE_bool("layer_norm", False, "Do layer normalization.")
tf.app.flags.DEFINE_bool("quantize", False, "Whether to quantize variables.")
tf.app.flags.DEFINE_bool("do_train", True, "If false, only update memory.")
tf.app.flags.DEFINE_bool("rnn_baseline", False, "If true build an RNN instead.")
tf.app.flags.DEFINE_bool("simple_tokenizer", False,
"If true, tokenize on spaces only, digits are 0.")
tf.app.flags.DEFINE_bool("normalize_digits", True,
"Whether to normalize digits with simple tokenizer.")
tf.app.flags.DEFINE_integer("vocab_size", 16, "Joint vocabulary size.")
tf.app.flags.DEFINE_string("data_dir", "/tmp", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "/tmp/", "Directory to store models.")
tf.app.flags.DEFINE_string("test_file_prefix", "", "Files to test (.en,.fr).")
tf.app.flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_string("word_vector_file_en", "",
"Optional file with word vectors to start training.")
tf.app.flags.DEFINE_string("word_vector_file_fr", "",
"Optional file with word vectors to start training.")
tf.app.flags.DEFINE_string("problem", "wmt", "What problem are we solving?.")
tf.app.flags.DEFINE_integer("ps_tasks", 0, "Number of ps tasks used.")
tf.app.flags.DEFINE_string("master", "", "Name of the TensorFlow master.")
FLAGS = tf.app.flags.FLAGS
EXTRA_EVAL = 10
EVAL_LEN_INCR = 8
MAXLEN_F = 2.0
def zero_split(tok_list, append=None):
"""Split tok_list (list of ints) on 0s, append int to all parts if given."""
res, cur, l = [], [], 0
for tok in tok_list:
if tok == 0:
if append is not None:
cur.append(append)
res.append(cur)
l = max(l, len(cur))
cur = []
else:
cur.append(tok)
if append is not None:
cur.append(append)
res.append(cur)
l = max(l, len(cur))
return res, l
def read_data(source_path, target_path, buckets, max_size=None, print_out=True):
"""Read data from source and target files and put into buckets.
Args:
source_path: path to the files with token-ids for the source language.
target_path: path to the file with token-ids for the target language;
it must be aligned with the source file: n-th line contains the desired
output for n-th line from the source_path.
buckets: the buckets to use.
max_size: maximum number of lines to read, all other will be ignored;
if 0 or None, data files will be read completely (no limit).
If set to 1, no data will be returned (empty lists of the right form).
print_out: whether to print out status or not.
Returns:
data_set: a list of length len(_buckets); data_set[n] contains a list of
(source, target) pairs read from the provided data files that fit
into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and
len(target) < _buckets[n][1]; source and target are lists of token-ids.
"""
data_set = [[] for _ in buckets]
counter = 0
if max_size != 1:
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0 and print_out:
print " reading data line %d" % counter
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
source_ids, source_len = zero_split(source_ids)
target_ids, target_len = zero_split(target_ids, append=wmt.EOS_ID)
for bucket_id, size in enumerate(buckets):
if source_len <= size and target_len <= size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = source_file.readline(), target_file.readline()
return data_set
global_train_set = {"wmt": []}
train_buckets_scale = {"wmt": []}
def calculate_buckets_scale(data_set, buckets, problem):
"""Calculate buckets scales for the given data set."""
train_bucket_sizes = [len(data_set[b]) for b in xrange(len(buckets))]
train_total_size = max(1, float(sum(train_bucket_sizes)))
# A bucket scale is a list of increasing numbers from 0 to 1 that we'll use
# to select a bucket. Length of [scale[i], scale[i+1]] is proportional to
# the size if i-th training bucket, as used later.
if problem not in train_buckets_scale:
train_buckets_scale[problem] = []
train_buckets_scale[problem].append(
[sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))])
return train_total_size
def read_data_into_global(source_path, target_path, buckets,
max_size=None, print_out=True):
"""Read data into the global variables (can be in a separate thread)."""
# pylint: disable=global-variable-not-assigned
global global_train_set, train_buckets_scale
# pylint: enable=global-variable-not-assigned
data_set = read_data(source_path, target_path, buckets, max_size, print_out)
global_train_set["wmt"].append(data_set)
train_total_size = calculate_buckets_scale(data_set, buckets, "wmt")
if print_out:
print " Finished global data reading (%d)." % train_total_size
def initialize(sess=None):
"""Initialize data and model."""
global MAXLEN_F
# Create training directory if it does not exist.
if not tf.gfile.IsDirectory(FLAGS.train_dir):
data.print_out("Creating training directory %s." % FLAGS.train_dir)
tf.gfile.MkDir(FLAGS.train_dir)
decode_suffix = "beam%dln%d" % (FLAGS.beam_size,
int(100 * FLAGS.length_norm))
if FLAGS.mode == 0:
decode_suffix = ""
if FLAGS.task >= 0:
data.log_filename = os.path.join(FLAGS.train_dir,
"log%d%s" % (FLAGS.task, decode_suffix))
else:
data.log_filename = os.path.join(FLAGS.train_dir, "neural_gpu/log")
# Set random seed.
if FLAGS.random_seed > 0:
seed = FLAGS.random_seed + max(0, FLAGS.task)
tf.set_random_seed(seed)
random.seed(seed)
np.random.seed(seed)
# Check data sizes.
assert data.bins
max_length = min(FLAGS.max_length, data.bins[-1])
while len(data.bins) > 1 and data.bins[-2] >= max_length + EXTRA_EVAL:
data.bins = data.bins[:-1]
if sess is None and FLAGS.task == 0 and FLAGS.num_replicas > 1:
if max_length > 60:
max_length = max_length * 1 / 2 # Save memory on chief.
min_length = min(14, max_length - 3) if FLAGS.problem == "wmt" else 3
for p in FLAGS.problem.split("-"):
if p in ["progeval", "progsynth"]:
min_length = max(26, min_length)
assert max_length + 1 > min_length
while len(data.bins) > 1 and data.bins[-2] >= max_length + EXTRA_EVAL:
data.bins = data.bins[:-1]
# Create checkpoint directory if it does not exist.
if FLAGS.mode == 0 or FLAGS.task < 0:
checkpoint_dir = os.path.join(FLAGS.train_dir, "neural_gpu%s"
% ("" if FLAGS.task < 0 else str(FLAGS.task)))
else:
checkpoint_dir = FLAGS.train_dir
if not tf.gfile.IsDirectory(checkpoint_dir):
data.print_out("Creating checkpoint directory %s." % checkpoint_dir)
tf.gfile.MkDir(checkpoint_dir)
# Prepare data.
if FLAGS.problem == "wmt":
# Prepare WMT data.
data.print_out("Preparing WMT data in %s" % FLAGS.data_dir)
if FLAGS.simple_tokenizer:
MAXLEN_F = 3.5
(en_train, fr_train, en_dev, fr_dev,
en_path, fr_path) = wmt.prepare_wmt_data(
FLAGS.data_dir, FLAGS.vocab_size,
tokenizer=wmt.space_tokenizer,
normalize_digits=FLAGS.normalize_digits)
else:
(en_train, fr_train, en_dev, fr_dev,
en_path, fr_path) = wmt.prepare_wmt_data(
FLAGS.data_dir, FLAGS.vocab_size)
# Read data into buckets and compute their sizes.
fr_vocab, rev_fr_vocab = wmt.initialize_vocabulary(fr_path)
data.vocab = fr_vocab
data.rev_vocab = rev_fr_vocab
data.print_out("Reading development and training data (limit: %d)."
% FLAGS.max_train_data_size)
dev_set = {}
dev_set["wmt"] = read_data(en_dev, fr_dev, data.bins)
def data_read(size, print_out):
read_data_into_global(en_train, fr_train, data.bins, size, print_out)
data_read(50000, False)
read_thread_small = threading.Thread(
name="reading-data-small", target=lambda: data_read(900000, False))
read_thread_small.start()
read_thread_full = threading.Thread(
name="reading-data-full",
target=lambda: data_read(FLAGS.max_train_data_size, True))
read_thread_full.start()
data.print_out("Data reading set up.")
else:
# Prepare algorithmic data.
en_path, fr_path = None, None
tasks = FLAGS.problem.split("-")
data_size = FLAGS.train_data_size
for t in tasks:
data.print_out("Generating data for %s." % t)
if t in ["progeval", "progsynth"]:
data.init_data(t, data.bins[-1], 20 * data_size, FLAGS.vocab_size)
if len(program_utils.prog_vocab) > FLAGS.vocab_size - 2:
raise ValueError("Increase vocab_size to %d for prog-tasks."
% (len(program_utils.prog_vocab) + 2))
data.rev_vocab = program_utils.prog_vocab
data.vocab = program_utils.prog_rev_vocab
else:
for l in xrange(max_length + EXTRA_EVAL - 1):
data.init_data(t, l, data_size, FLAGS.vocab_size)
data.init_data(t, data.bins[-2], data_size, FLAGS.vocab_size)
data.init_data(t, data.bins[-1], data_size, FLAGS.vocab_size)
if t not in global_train_set:
global_train_set[t] = []
global_train_set[t].append(data.train_set[t])
calculate_buckets_scale(data.train_set[t], data.bins, t)
dev_set = data.test_set
# Grid-search parameters.
lr = FLAGS.lr
init_weight = FLAGS.init_weight
max_grad_norm = FLAGS.max_grad_norm
if sess is not None and FLAGS.task > -1:
def job_id_factor(step):
"""If jobid / step mod 3 is 0, 1, 2: say 0, 1, -1."""
return ((((FLAGS.task / step) % 3) + 1) % 3) - 1
lr *= math.pow(2, job_id_factor(1))
init_weight *= math.pow(1.5, job_id_factor(3))
max_grad_norm *= math.pow(2, job_id_factor(9))
# Print out parameters.
curriculum = FLAGS.curriculum_seq
msg1 = ("layers %d kw %d h %d kh %d batch %d noise %.2f"
% (FLAGS.nconvs, FLAGS.kw, FLAGS.height, FLAGS.kh,
FLAGS.batch_size, FLAGS.grad_noise_scale))
msg2 = ("cut %.2f lr %.3f iw %.2f cr %.2f nm %d d%.4f gn %.2f %s"
% (FLAGS.cutoff, lr, init_weight, curriculum, FLAGS.nmaps,
FLAGS.dropout, max_grad_norm, msg1))
data.print_out(msg2)
# Create model and initialize it.
tf.get_variable_scope().set_initializer(
tf.orthogonal_initializer(gain=1.8 * init_weight))
max_sampling_rate = FLAGS.max_sampling_rate if FLAGS.mode == 0 else 0.0
o = FLAGS.vocab_size if FLAGS.max_target_vocab < 1 else FLAGS.max_target_vocab
ngpu.CHOOSE_K = FLAGS.soft_mem_size
do_beam_model = FLAGS.train_beam_freq > 0.0001 and FLAGS.beam_size > 1
beam_size = FLAGS.beam_size if FLAGS.mode > 0 and not do_beam_model else 1
beam_size = min(beam_size, FLAGS.beam_size)
beam_model = None
def make_ngpu(cur_beam_size, back):
return ngpu.NeuralGPU(
FLAGS.nmaps, FLAGS.vec_size, FLAGS.vocab_size, o,
FLAGS.dropout, max_grad_norm, FLAGS.cutoff, FLAGS.nconvs,
FLAGS.kw, FLAGS.kh, FLAGS.height, FLAGS.mem_size,
lr / math.sqrt(FLAGS.num_replicas), min_length + 3, FLAGS.num_gpus,
FLAGS.num_replicas, FLAGS.grad_noise_scale, max_sampling_rate,
atrous=FLAGS.atrous, do_rnn=FLAGS.rnn_baseline,
do_layer_norm=FLAGS.layer_norm, beam_size=cur_beam_size, backward=back)
if sess is None:
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
model = make_ngpu(beam_size, True)
if do_beam_model:
tf.get_variable_scope().reuse_variables()
beam_model = make_ngpu(FLAGS.beam_size, False)
else:
model = make_ngpu(beam_size, True)
if do_beam_model:
tf.get_variable_scope().reuse_variables()
beam_model = make_ngpu(FLAGS.beam_size, False)
sv = None
if sess is None:
# The supervisor configuration has a few overriden options.
sv = tf.train.Supervisor(logdir=checkpoint_dir,
is_chief=(FLAGS.task < 1),
saver=model.saver,
summary_op=None,
save_summaries_secs=60,
save_model_secs=15 * 60,
global_step=model.global_step)
config = tf.ConfigProto(allow_soft_placement=True)
sess = sv.PrepareSession(FLAGS.master, config=config)
data.print_out("Created model. Checkpoint dir %s" % checkpoint_dir)
# Load model from parameters if a checkpoint exists.
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path + ".index"):
data.print_out("Reading model parameters from %s"
% ckpt.model_checkpoint_path)
model.saver.restore(sess, ckpt.model_checkpoint_path)
elif sv is None:
sess.run(tf.global_variables_initializer())
data.print_out("Initialized variables (no supervisor mode).")
elif FLAGS.task < 1 and FLAGS.mem_size > 0:
# sess.run(model.mem_norm_op)
data.print_out("Created new model and normalized mem (on chief).")
# Return the model and needed variables.
return (model, beam_model, min_length, max_length, checkpoint_dir,
(global_train_set, dev_set, en_path, fr_path), sv, sess)
def m_step(model, beam_model, sess, batch_size, inp, target, bucket, nsteps, p):
"""Evaluation multi-step for program synthesis."""
state, scores, hist = None, [[-11.0 for _ in xrange(batch_size)]], []
for _ in xrange(nsteps):
# Get the best beam (no training, just forward model).
new_target, new_first, new_inp, new_scores = get_best_beam(
beam_model, sess, inp, target,
batch_size, FLAGS.beam_size, bucket, hist, p, test_mode=True)
hist.append(new_first)
_, _, _, state = model.step(sess, inp, new_target, False, state=state)
inp = new_inp
scores.append([max(scores[-1][i], new_scores[i])
for i in xrange(batch_size)])
# The final step with the true target.
loss, res, _, _ = model.step(sess, inp, target, False, state=state)
return loss, res, new_target, scores[1:]
def single_test(bin_id, model, sess, nprint, batch_size, dev, p, print_out=True,
offset=None, beam_model=None):
"""Test model on test data of length l using the given session."""
if not dev[p][bin_id]:
data.print_out(" bin %d (%d)\t%s\tppl NA errors NA seq-errors NA"
% (bin_id, data.bins[bin_id], p))
return 1.0, 1.0, 0.0
inpt, target = data.get_batch(
bin_id, batch_size, dev[p], FLAGS.height, offset)
if FLAGS.beam_size > 1 and beam_model:
loss, res, new_tgt, scores = m_step(
model, beam_model, sess, batch_size, inpt, target, bin_id,
FLAGS.eval_beam_steps, p)
score_avgs = [sum(s) / float(len(s)) for s in scores]
score_maxs = [max(s) for s in scores]
score_str = ["(%.2f, %.2f)" % (score_avgs[i], score_maxs[i])
for i in xrange(FLAGS.eval_beam_steps)]
data.print_out(" == scores (avg, max): %s" % "; ".join(score_str))
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size,
nprint, new_tgt, scores[-1])
else:
loss, res, _, _ = model.step(sess, inpt, target, False)
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size,
nprint)
seq_err = float(seq_err) / batch_size
if total > 0:
errors = float(errors) / total
if print_out:
data.print_out(" bin %d (%d)\t%s\tppl %.2f errors %.2f seq-errors %.2f"
% (bin_id, data.bins[bin_id], p, data.safe_exp(loss),
100 * errors, 100 * seq_err))
return (errors, seq_err, loss)
def assign_vectors(word_vector_file, embedding_key, vocab_path, sess):
"""Assign the embedding_key variable from the given word vectors file."""
# For words in the word vector file, set their embedding at start.
if not tf.gfile.Exists(word_vector_file):
data.print_out("Word vector file does not exist: %s" % word_vector_file)
sys.exit(1)
vocab, _ = wmt.initialize_vocabulary(vocab_path)
vectors_variable = [v for v in tf.trainable_variables()
if embedding_key == v.name]
if len(vectors_variable) != 1:
data.print_out("Word vector variable not found or too many.")
sys.exit(1)
vectors_variable = vectors_variable[0]
vectors = vectors_variable.eval()
data.print_out("Pre-setting word vectors from %s" % word_vector_file)
with tf.gfile.GFile(word_vector_file, mode="r") as f:
# Lines have format: dog 0.045123 -0.61323 0.413667 ...
for line in f:
line_parts = line.split()
# The first part is the word.
word = line_parts[0]
if word in vocab:
# Remaining parts are components of the vector.
word_vector = np.array(map(float, line_parts[1:]))
if len(word_vector) != FLAGS.vec_size:
data.print_out("Warn: Word '%s', Expecting vector size %d, "
"found %d" % (word, FLAGS.vec_size,
len(word_vector)))
else:
vectors[vocab[word]] = word_vector
# Assign the modified vectors to the vectors_variable in the graph.
sess.run([vectors_variable.initializer],
{vectors_variable.initializer.inputs[1]: vectors})
def print_vectors(embedding_key, vocab_path, word_vector_file):
"""Print vectors from the given variable."""
_, rev_vocab = wmt.initialize_vocabulary(vocab_path)
vectors_variable = [v for v in tf.trainable_variables()
if embedding_key == v.name]
if len(vectors_variable) != 1:
data.print_out("Word vector variable not found or too many.")
sys.exit(1)
vectors_variable = vectors_variable[0]
vectors = vectors_variable.eval()
l, s = vectors.shape[0], vectors.shape[1]
data.print_out("Printing %d word vectors from %s to %s."
% (l, embedding_key, word_vector_file))
with tf.gfile.GFile(word_vector_file, mode="w") as f:
# Lines have format: dog 0.045123 -0.61323 0.413667 ...
for i in xrange(l):
f.write(rev_vocab[i])
for j in xrange(s):
f.write(" %.8f" % vectors[i][j])
f.write("\n")
def get_bucket_id(train_buckets_scale_c, max_cur_length, data_set):
"""Get a random bucket id."""
# Choose a bucket according to data distribution. Pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale_c))
if train_buckets_scale_c[i] > random_number_01])
while bucket_id > 0 and not data_set[bucket_id]:
bucket_id -= 1
for _ in xrange(10 if np.random.random_sample() < 0.9 else 1):
if data.bins[bucket_id] > max_cur_length:
random_number_01 = min(random_number_01, np.random.random_sample())
bucket_id = min([i for i in xrange(len(train_buckets_scale_c))
if train_buckets_scale_c[i] > random_number_01])
while bucket_id > 0 and not data_set[bucket_id]:
bucket_id -= 1
return bucket_id
def score_beams(beams, target, inp, history, p,
print_out=False, test_mode=False):
"""Score beams."""
if p == "progsynth":
return score_beams_prog(beams, target, inp, history, print_out, test_mode)
elif test_mode:
return beams[0], 10.0 if str(beams[0][:len(target)]) == str(target) else 0.0
else:
history_s = [str(h) for h in history]
best, best_score, tgt, eos_id = None, -1000.0, target, None
if p == "wmt":
eos_id = wmt.EOS_ID
if eos_id and eos_id in target:
tgt = target[:target.index(eos_id)]
for beam in beams:
if eos_id and eos_id in beam:
beam = beam[:beam.index(eos_id)]
l = min(len(tgt), len(beam))
score = len([i for i in xrange(l) if tgt[i] == beam[i]]) / float(len(tgt))
hist_score = 20.0 if str([b for b in beam if b > 0]) in history_s else 0.0
if score < 1.0:
score -= hist_score
if score > best_score:
best = beam
best_score = score
return best, best_score
def score_beams_prog(beams, target, inp, history, print_out=False,
test_mode=False):
"""Score beams for program synthesis."""
tgt_prog = linearize(target, program_utils.prog_vocab, True, 1)
hist_progs = [linearize(h, program_utils.prog_vocab, True, 1)
for h in history]
tgt_set = set(target)
if print_out:
print "target: ", tgt_prog
inps, tgt_outs = [], []
for i in xrange(3):
ilist = [inp[i + 1, l] for l in xrange(inp.shape[1])]
clist = [program_utils.prog_vocab[x] for x in ilist if x > 0]
olist = clist[clist.index("]") + 1:] # outputs
clist = clist[1:clist.index("]")] # inputs
inps.append([int(x) for x in clist])
if olist[0] == "[": # olist may be [int] or just int
tgt_outs.append(str([int(x) for x in olist[1:-1]]))
else:
if len(olist) == 1:
tgt_outs.append(olist[0])
else:
print [program_utils.prog_vocab[x] for x in ilist if x > 0]
print olist
print tgt_prog
print program_utils.evaluate(tgt_prog, {"a": inps[-1]})
print "AAAAA"
tgt_outs.append(olist[0])
if not test_mode:
for _ in xrange(7):
ilen = np.random.randint(len(target) - 3) + 1
inps.append([random.choice(range(-15, 15)) for _ in range(ilen)])
tgt_outs.extend([program_utils.evaluate(tgt_prog, {"a": inp})
for inp in inps[3:]])
best, best_prog, best_score = None, "", -1000.0
for beam in beams:
b_prog = linearize(beam, program_utils.prog_vocab, True, 1)
b_set = set(beam)
jsim = len(tgt_set & b_set) / float(len(tgt_set | b_set))
b_outs = [program_utils.evaluate(b_prog, {"a": inp}) for inp in inps]
errs = len([x for x in b_outs if x == "ERROR"])
imatches = len([i for i in xrange(3) if b_outs[i] == tgt_outs[i]])
perfect = 10.0 if imatches == 3 else 0.0
hist_score = 20.0 if b_prog in hist_progs else 0.0
if test_mode:
score = perfect - errs
else:
matches = len([i for i in xrange(10) if b_outs[i] == tgt_outs[i]])
score = perfect + matches + jsim - errs
if score < 10.0:
score -= hist_score
# print b_prog
# print "jsim: ", jsim, " errs: ", errs, " mtchs: ", matches, " s: ", score
if score > best_score:
best = beam
best_prog = b_prog
best_score = score
if print_out:
print "best score: ", best_score, " best prog: ", best_prog
return best, best_score
def get_best_beam(beam_model, sess, inp, target, batch_size, beam_size,
bucket, history, p, test_mode=False):
"""Run beam_model, score beams, and return the best as target and in input."""
_, output_logits, _, _ = beam_model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size)
new_targets, new_firsts, scores, new_inp = [], [], [], np.copy(inp)
for b in xrange(batch_size):
outputs = []
history_b = [[h[b, 0, l] for l in xrange(data.bins[bucket])]
for h in history]
for beam_idx in xrange(beam_size):
outputs.append([int(o[beam_idx * batch_size + b])
for o in output_logits])
target_t = [target[b, 0, l] for l in xrange(data.bins[bucket])]
best, best_score = score_beams(
outputs, [t for t in target_t if t > 0], inp[b, :, :],
[[t for t in h if t > 0] for h in history_b], p, test_mode=test_mode)
scores.append(best_score)
if 1 in best: # Only until _EOS.
best = best[:best.index(1) + 1]
best += [0 for _ in xrange(len(target_t) - len(best))]
new_targets.append([best])
first, _ = score_beams(
outputs, [t for t in target_t if t > 0], inp[b, :, :],
[[t for t in h if t > 0] for h in history_b], p, test_mode=True)
if 1 in first: # Only until _EOS.
first = first[:first.index(1) + 1]
first += [0 for _ in xrange(len(target_t) - len(first))]
new_inp[b, 0, :] = np.array(first, dtype=np.int32)
new_firsts.append([first])
# Change target if we found a great answer.
new_target = np.array(new_targets, dtype=np.int32)
for b in xrange(batch_size):
if scores[b] >= 10.0:
target[b, 0, :] = new_target[b, 0, :]
new_first = np.array(new_firsts, dtype=np.int32)
return new_target, new_first, new_inp, scores
def train():
"""Train the model."""
batch_size = FLAGS.batch_size * FLAGS.num_gpus
(model, beam_model, min_length, max_length, checkpoint_dir,
(train_set, dev_set, en_vocab_path, fr_vocab_path), sv, sess) = initialize()
with sess.as_default():
quant_op = model.quantize_op
max_cur_length = min(min_length + 3, max_length)
prev_acc_perp = [1000000 for _ in xrange(5)]
prev_seq_err = 1.0
is_chief = FLAGS.task < 1
do_report = False
# Main traning loop.
while not sv.ShouldStop():
global_step, max_cur_length, learning_rate = sess.run(
[model.global_step, model.cur_length, model.lr])
acc_loss, acc_l1, acc_total, acc_errors, acc_seq_err = 0.0, 0.0, 0, 0, 0
acc_grad_norm, step_count, step_c1, step_time = 0.0, 0, 0, 0.0
# For words in the word vector file, set their embedding at start.
bound1 = FLAGS.steps_per_checkpoint - 1
if FLAGS.word_vector_file_en and global_step < bound1 and is_chief:
assign_vectors(FLAGS.word_vector_file_en, "embedding:0",
en_vocab_path, sess)
if FLAGS.max_target_vocab < 1:
assign_vectors(FLAGS.word_vector_file_en, "target_embedding:0",
en_vocab_path, sess)
if FLAGS.word_vector_file_fr and global_step < bound1 and is_chief:
assign_vectors(FLAGS.word_vector_file_fr, "embedding:0",
fr_vocab_path, sess)
if FLAGS.max_target_vocab < 1:
assign_vectors(FLAGS.word_vector_file_fr, "target_embedding:0",
fr_vocab_path, sess)
for _ in xrange(FLAGS.steps_per_checkpoint):
step_count += 1
step_c1 += 1
global_step = int(model.global_step.eval())
train_beam_anneal = global_step / float(FLAGS.train_beam_anneal)
train_beam_freq = FLAGS.train_beam_freq * min(1.0, train_beam_anneal)
p = random.choice(FLAGS.problem.split("-"))
train_set = global_train_set[p][-1]
bucket_id = get_bucket_id(train_buckets_scale[p][-1], max_cur_length,
train_set)
# Prefer longer stuff 60% of time if not wmt.
if np.random.randint(100) < 60 and FLAGS.problem != "wmt":
bucket1 = get_bucket_id(train_buckets_scale[p][-1], max_cur_length,
train_set)
bucket_id = max(bucket1, bucket_id)
# Run a step and time it.
start_time = time.time()
inp, target = data.get_batch(bucket_id, batch_size, train_set,
FLAGS.height)
noise_param = math.sqrt(math.pow(global_step + 1, -0.55) *
prev_seq_err) * FLAGS.grad_noise_scale
# In multi-step mode, we use best from beam for middle steps.
state, new_target, scores, history = None, None, None, []
while (FLAGS.beam_size > 1 and
train_beam_freq > np.random.random_sample()):
# Get the best beam (no training, just forward model).
new_target, new_first, new_inp, scores = get_best_beam(
beam_model, sess, inp, target,
batch_size, FLAGS.beam_size, bucket_id, history, p)
history.append(new_first)
# Training step with the previous input and the best beam as target.
_, _, _, state = model.step(sess, inp, new_target, FLAGS.do_train,
noise_param, update_mem=True, state=state)
# Change input to the new one for the next step.
inp = new_inp
# If all results are great, stop (todo: not to wait for all?).
if FLAGS.nprint > 1:
print scores
if sum(scores) / float(len(scores)) >= 10.0:
break
# The final step with the true target.
loss, res, gnorm, _ = model.step(
sess, inp, target, FLAGS.do_train, noise_param,
update_mem=True, state=state)
step_time += time.time() - start_time
acc_grad_norm += 0.0 if gnorm is None else float(gnorm)
# Accumulate statistics.
acc_loss += loss
acc_l1 += loss
errors, total, seq_err = data.accuracy(
inp, res, target, batch_size, 0, new_target, scores)
if FLAGS.nprint > 1:
print "seq_err: ", seq_err
acc_total += total
acc_errors += errors
acc_seq_err += seq_err
# Report summary every 10 steps.
if step_count + 3 > FLAGS.steps_per_checkpoint:
do_report = True # Don't polute plot too early.
if is_chief and step_count % 10 == 1 and do_report:
cur_loss = acc_l1 / float(step_c1)
acc_l1, step_c1 = 0.0, 0
cur_perp = data.safe_exp(cur_loss)
summary = tf.Summary()
summary.value.extend(
[tf.Summary.Value(tag="log_perplexity", simple_value=cur_loss),
tf.Summary.Value(tag="perplexity", simple_value=cur_perp)])
sv.SummaryComputed(sess, summary, global_step)
# Normalize and print out accumulated statistics.
acc_loss /= step_count
step_time /= FLAGS.steps_per_checkpoint
acc_seq_err = float(acc_seq_err) / (step_count * batch_size)
prev_seq_err = max(0.0, acc_seq_err - 0.02) # No noise at error < 2%.
acc_errors = float(acc_errors) / acc_total if acc_total > 0 else 1.0
t_size = float(sum([len(x) for x in train_set])) / float(1000000)
msg = ("step %d step-time %.2f train-size %.3f lr %.6f grad-norm %.4f"
% (global_step + 1, step_time, t_size, learning_rate,
acc_grad_norm / FLAGS.steps_per_checkpoint))
data.print_out("%s len %d ppl %.6f errors %.2f sequence-errors %.2f" %
(msg, max_cur_length, data.safe_exp(acc_loss),
100*acc_errors, 100*acc_seq_err))
# If errors are below the curriculum threshold, move curriculum forward.
is_good = FLAGS.curriculum_ppx > data.safe_exp(acc_loss)
is_good = is_good and FLAGS.curriculum_seq > acc_seq_err
if is_good and is_chief:
if FLAGS.quantize:
# Quantize weights.
data.print_out(" Quantizing parameters.")
sess.run([quant_op])
# Increase current length (until the next with training data).
sess.run(model.cur_length_incr_op)
# Forget last perplexities if we're not yet at the end.
if max_cur_length < max_length:
prev_acc_perp.append(1000000)
# Lower learning rate if we're worse than the last 5 checkpoints.
acc_perp = data.safe_exp(acc_loss)
if acc_perp > max(prev_acc_perp[-5:]) and is_chief:
sess.run(model.lr_decay_op)
prev_acc_perp.append(acc_perp)
# Save checkpoint.
if is_chief:
checkpoint_path = os.path.join(checkpoint_dir, "neural_gpu.ckpt")
model.saver.save(sess, checkpoint_path,
global_step=model.global_step)
# Run evaluation.
bin_bound = 4
for p in FLAGS.problem.split("-"):
total_loss, total_err, tl_counter = 0.0, 0.0, 0
for bin_id in xrange(len(data.bins)):
if bin_id < bin_bound or bin_id % FLAGS.eval_bin_print == 1:
err, _, loss = single_test(bin_id, model, sess, FLAGS.nprint,
batch_size * 4, dev_set, p,
beam_model=beam_model)
if loss > 0.0:
total_loss += loss
total_err += err
tl_counter += 1
test_loss = total_loss / max(1, tl_counter)
test_err = total_err / max(1, tl_counter)
test_perp = data.safe_exp(test_loss)
summary = tf.Summary()
summary.value.extend(
[tf.Summary.Value(tag="test/%s/loss" % p, simple_value=test_loss),
tf.Summary.Value(tag="test/%s/error" % p, simple_value=test_err),
tf.Summary.Value(tag="test/%s/perplexity" % p,
simple_value=test_perp)])
sv.SummaryComputed(sess, summary, global_step)
def linearize(output, rev_fr_vocab, simple_tokenizer=None, eos_id=wmt.EOS_ID):
# If there is an EOS symbol in outputs, cut them at that point (WMT).
if eos_id in output:
output = output[:output.index(eos_id)]
# Print out French sentence corresponding to outputs.
if simple_tokenizer or FLAGS.simple_tokenizer:
vlen = len(rev_fr_vocab)
def vget(o):
if o < vlen:
return rev_fr_vocab[o]
return "UNK"
return " ".join([vget(o) for o in output])
else:
return wmt.basic_detokenizer([rev_fr_vocab[o] for o in output])
def evaluate():
"""Evaluate an existing model."""
batch_size = FLAGS.batch_size * FLAGS.num_gpus
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
(model, beam_model, _, _, _,
(_, dev_set, en_vocab_path, fr_vocab_path), _, sess) = initialize(sess)
for p in FLAGS.problem.split("-"):
for bin_id in xrange(len(data.bins)):
if (FLAGS.task >= 0 and bin_id > 4) or (FLAGS.nprint == 0 and
bin_id > 8 and p == "wmt"):
break
single_test(bin_id, model, sess, FLAGS.nprint, batch_size, dev_set, p,
beam_model=beam_model)
path = FLAGS.test_file_prefix
xid = "" if FLAGS.task < 0 else ("%.4d" % (FLAGS.task+FLAGS.decode_offset))
en_path, fr_path = path + ".en" + xid, path + ".fr" + xid
# Evaluate the test file if they exist.
if path and tf.gfile.Exists(en_path) and tf.gfile.Exists(fr_path):
data.print_out("Translating test set %s" % en_path)
# Read lines.
en_lines, fr_lines = [], []
with tf.gfile.GFile(en_path, mode="r") as f:
for line in f:
en_lines.append(line.strip())
with tf.gfile.GFile(fr_path, mode="r") as f:
for line in f:
fr_lines.append(line.strip())
# Tokenize and convert to ids.
en_vocab, _ = wmt.initialize_vocabulary(en_vocab_path)
_, rev_fr_vocab = wmt.initialize_vocabulary(fr_vocab_path)
if FLAGS.simple_tokenizer:
en_ids = [wmt.sentence_to_token_ids(
l, en_vocab, tokenizer=wmt.space_tokenizer,
normalize_digits=FLAGS.normalize_digits)
for l in en_lines]
else:
en_ids = [wmt.sentence_to_token_ids(l, en_vocab) for l in en_lines]
# Translate.
results = []
for idx, token_ids in enumerate(en_ids):
if idx % 5 == 0:
data.print_out("Translating example %d of %d." % (idx, len(en_ids)))
# Which bucket does it belong to?
buckets = [b for b in xrange(len(data.bins))
if data.bins[b] >= len(token_ids)]
if buckets:
result, result_cost = [], 100000000.0
for bucket_id in buckets:
if data.bins[bucket_id] > MAXLEN_F * len(token_ids) + EVAL_LEN_INCR:
break
# Get a 1-element batch to feed the sentence to the model.
used_batch_size = 1 # batch_size
inp, target = data.get_batch(
bucket_id, used_batch_size, None, FLAGS.height,
preset=([token_ids], [[]]))
loss, output_logits, _, _ = model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size)
outputs = [int(o[0]) for o in output_logits]
loss = loss[0] - (data.bins[bucket_id] * FLAGS.length_norm)
if FLAGS.simple_tokenizer:
cur_out = outputs
if wmt.EOS_ID in cur_out:
cur_out = cur_out[:cur_out.index(wmt.EOS_ID)]
res_tags = [rev_fr_vocab[o] for o in cur_out]
bad_words, bad_brack = wmt.parse_constraints(token_ids, res_tags)
loss += 1000.0 * bad_words + 100.0 * bad_brack
# print (bucket_id, loss)
if loss < result_cost:
result = outputs
result_cost = loss
final = linearize(result, rev_fr_vocab)
results.append("%s\t%s\n" % (final, fr_lines[idx]))
# print result_cost
sys.stderr.write(results[-1])
sys.stderr.flush()
else:
sys.stderr.write("TOOO_LONG\t%s\n" % fr_lines[idx])
sys.stderr.flush()
if xid:
decode_suffix = "beam%dln%dn" % (FLAGS.beam_size,
int(100 * FLAGS.length_norm))
with tf.gfile.GFile(path + ".res" + decode_suffix + xid, mode="w") as f:
for line in results:
f.write(line)
def mul(l):
res = 1.0
for s in l:
res *= s
return res
def interactive():
"""Interactively probe an existing model."""
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Initialize model.
(model, _, _, _, _, (_, _, en_path, fr_path), _, _) = initialize(sess)
# Load vocabularies.
en_vocab, rev_en_vocab = wmt.initialize_vocabulary(en_path)
_, rev_fr_vocab = wmt.initialize_vocabulary(fr_path)
# Print out vectors and variables.
if FLAGS.nprint > 0 and FLAGS.word_vector_file_en:
print_vectors("embedding:0", en_path, FLAGS.word_vector_file_en)
if FLAGS.nprint > 0 and FLAGS.word_vector_file_fr:
print_vectors("target_embedding:0", fr_path, FLAGS.word_vector_file_fr)
total = 0
for v in tf.trainable_variables():
shape = v.get_shape().as_list()
total += mul(shape)
print (v.name, shape, mul(shape))
print total
# Start interactive loop.
sys.stdout.write("Input to Neural GPU Translation Model.\n")
sys.stdout.write("> ")
sys.stdout.flush()
inpt = sys.stdin.readline(), ""
while inpt:
cures = []
# Get token-ids for the input sentence.
if FLAGS.simple_tokenizer:
token_ids = wmt.sentence_to_token_ids(
inpt, en_vocab, tokenizer=wmt.space_tokenizer,
normalize_digits=FLAGS.normalize_digits)
else:
token_ids = wmt.sentence_to_token_ids(inpt, en_vocab)
print [rev_en_vocab[t] for t in token_ids]
# Which bucket does it belong to?
buckets = [b for b in xrange(len(data.bins))
if data.bins[b] >= max(len(token_ids), len(cures))]
if cures:
buckets = [buckets[0]]
if buckets:
result, result_cost = [], 10000000.0
for bucket_id in buckets:
if data.bins[bucket_id] > MAXLEN_F * len(token_ids) + EVAL_LEN_INCR:
break
glen = 1
for gen_idx in xrange(glen):
# Get a 1-element batch to feed the sentence to the model.
inp, target = data.get_batch(
bucket_id, 1, None, FLAGS.height, preset=([token_ids], [cures]))
loss, output_logits, _, _ = model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size,
update_mem=False)
# If it is a greedy decoder, outputs are argmaxes of output_logits.
if FLAGS.beam_size > 1:
outputs = [int(o) for o in output_logits]
else:
loss = loss[0] - (data.bins[bucket_id] * FLAGS.length_norm)
outputs = [int(np.argmax(logit, axis=1))
for logit in output_logits]
print [rev_fr_vocab[t] for t in outputs]
print loss, data.bins[bucket_id]
print linearize(outputs, rev_fr_vocab)
cures.append(outputs[gen_idx])
print cures
print linearize(cures, rev_fr_vocab)
if FLAGS.simple_tokenizer:
cur_out = outputs
if wmt.EOS_ID in cur_out:
cur_out = cur_out[:cur_out.index(wmt.EOS_ID)]
res_tags = [rev_fr_vocab[o] for o in cur_out]
bad_words, bad_brack = wmt.parse_constraints(token_ids, res_tags)