-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_paper.py
389 lines (320 loc) · 21.2 KB
/
main_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""
Usage Instructions:
# R2D2 exact paper
### miniImagenet
#### 5 way, 1 shot, backprop everywhere, correct dropout RESULT: 51.7 (20k)
python main_paper.py --datasource=miniimagenet --metatrain_iterations=20000 --meta_batch_size=4 --update_batch_size=1 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=5 --logdir=logs/paperFullBPminiimagenet5way1shot/ --num_filters=32 --max_pool=True
#### 5 way, 5 shot, backprop everywhere, correct dropout RESULT: 64.1 (16k)
python main_paper.py --datasource=miniimagenet --metatrain_iterations=20000 --meta_batch_size=4 --update_batch_size=5 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=5 --logdir=logs/paperFullBPminiimagenet5way5shot/ --num_filters=32 --max_pool=True
#### 2 way, 1 shot, backprop everywhere, correct dropout RESULT: 74.6 ± 2.9%
python main_paper.py --datasource=miniimagenet --metatrain_iterations=20000 --meta_batch_size=4 --update_batch_size=1 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=2 --logdir=logs/paperFullBPminiimagenet2way1shot/ --num_filters=32 --max_pool=True
#### 2 way, 5 shot, backprop everywhere, correct dropout RESULT:
python main_paper.py --datasource=miniimagenet --metatrain_iterations=20000 --meta_batch_size=4 --update_batch_size=5 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=2 --logdir=logs/paperFullBPminiimagenet2way5shot/ --num_filters=32 --max_pool=True
### CIFAR FS
#### 5 way, 1 shot, RESULT:
python main_paper.py --datasource=cifarfs --metatrain_iterations=60000 --meta_batch_size=4 --update_batch_size=1 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=5 --logdir=logs/paperFullBPcifarfs5way1shot/ --num_filters=32 --max_pool=True
#### 2 way, 1 shot, RESULT: 83.6 (20k)
python main_paper.py --datasource=cifarfs --metatrain_iterations=60000 --meta_batch_size=4 --update_batch_size=1 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=2 --logdir=logs/paperFullBPcifarfs2way1shot/ --num_filters=32 --max_pool=True
#### 2 way, 5 shot, RESULT: 89.0 (20k)
python main_paper.py --datasource=cifarfs --metatrain_iterations=30000 --meta_batch_size=4 --update_batch_size=5 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=2 --logdir=logs/paperFullBPcifarfs2way5shot/ --num_filters=32 --max_pool=True
#### 5 way, 5 shot, RESULT:
python main_paper.py --datasource=cifarfs --metatrain_iterations=30000 --meta_batch_size=4 --update_batch_size=5 --update_lr=0.01 --meta_lr=0.005 --num_updates=1 --num_classes=5 --logdir=logs/paperFullBPcifarfs5way5shot/ --num_filters=32 --max_pool=True
To run evaluation, use the '--train=False' flag and the '--test_set=True' flag to use the test set.
For miniimagenet training, acquire the dataset online, put it in the correspoding data directory, and see the python script instructions in that directory to preprocess the data. For CIFAR fs training, the dataset is automatically downloaded, and the splits are present in the code in the data directory.
"""
import csv
import numpy as np
import pickle
import random
import tensorflow as tf
from data_generator import DataGenerator
from r2d2_paper import R2D2_paper
from tensorflow.python.platform import flags
FLAGS = flags.FLAGS
## Dataset/method options
flags.DEFINE_string('datasource', 'sinusoid', 'sinusoid or omniglot or miniimagenet')
flags.DEFINE_integer('num_classes', 5, 'number of classes used in classification (e.g. 5-way classification).')
# oracle means task id is input (only suitable for sinusoid)
flags.DEFINE_string('baseline', None, 'oracle, or None')
## Training options
flags.DEFINE_integer('pretrain_iterations', 0, 'number of pre-training iterations.')
flags.DEFINE_integer('metatrain_iterations', 15000, 'number of metatraining iterations.') # 60k meta training iterations for miniImagenet (15k for omniglot, 50k for sinusoid)
flags.DEFINE_integer('meta_batch_size', 25, 'number of tasks sampled per meta-update') # 4 for miniImagenet
flags.DEFINE_float('meta_lr', 0.001, 'the base learning rate of the generator')
flags.DEFINE_integer('update_batch_size', 5, 'number of examples used for inner gradient update (K for K-shot learning).')
flags.DEFINE_float('update_lr', 1e-3, 'step size alpha for inner gradient update.') # 0.01 for miniImagenet (0.1 for omniglot)
flags.DEFINE_integer('num_updates', 1, 'number of inner gradient updates during training.') # 5 inner gradient updates for miniImagenet
## Model options
flags.DEFINE_string('model', 'r2d2', 'r2d2 or maml')
flags.DEFINE_string('norm', 'batch_norm', 'batch_norm, layer_norm, or None')
flags.DEFINE_integer('num_filters', 64, 'number of filters for conv nets -- 32 for miniimagenet, 64 for omiglot.') # 32 filters for miniImagenet
flags.DEFINE_bool('conv', True, 'whether or not to use a convolutional network, only applicable in some cases')
flags.DEFINE_bool('max_pool', False, 'Whether or not to use max pooling rather than strided convolutions') # True max pooling for miniImagenet
flags.DEFINE_bool('stop_grad', False, 'if True, do not use second derivatives in meta-optimization (for speed)')
## Logging, saving, and testing options
flags.DEFINE_bool('log', True, 'if false, do not log summaries, for debugging code.')
flags.DEFINE_string('logdir', '/tmp/data', 'directory for summaries and checkpoints.')
flags.DEFINE_bool('resume', True, 'resume training if there is a model available')
flags.DEFINE_bool('train', True, 'True to train, False to test.')
flags.DEFINE_integer('test_iter', -1, 'iteration to load model (-1 for latest model)')
flags.DEFINE_bool('test_set', False, 'Set to true to test on the the test set, False for the validation set.')
flags.DEFINE_integer('train_update_batch_size', -1, 'number of examples used for gradient update during training (use if you want to test with a different number).')
flags.DEFINE_float('train_update_lr', -1, 'value of inner gradient step step during training. (use if you want to test with a different value)') # 0.1 for omniglot
def train(model, saver, sess, exp_string, data_generator, resume_itr=0):
"""Trains a model with meta learning
Args:
model: The class object which is the model we are training on
saver: TensorFlow saver object to keep last (10) trainable variables
sess: TensorFlow session object signifying the session on which is trained
exp_string: String which is used as a folder name to export results to
data_generator: data_generator object that generates the right data for the meta learning problem at hand
resume_itr: Integer equal to the iteration from which training should be resumed, default = 0
"""
SUMMARY_INTERVAL = 100
SAVE_INTERVAL = 1000
if FLAGS.datasource == 'sinusoid':
PRINT_INTERVAL = 1000
TEST_PRINT_INTERVAL = PRINT_INTERVAL*5
else:
PRINT_INTERVAL = 100
TEST_PRINT_INTERVAL = PRINT_INTERVAL*5 # print (1) test eval result only after the train results are printed 5 times
if FLAGS.log:
train_writer = tf.summary.FileWriter(FLAGS.logdir + '/' + exp_string, sess.graph)
print('Done initializing, starting training.')
prelosses, postlosses = [], []
num_classes = data_generator.num_classes # for classification, 1 otherwise
multitask_weights, reg_weights = [], []
meta_lr_damped = FLAGS.meta_lr
# Start iterations from resume_itr if there is a training history
for itr in range(resume_itr, FLAGS.pretrain_iterations + FLAGS.metatrain_iterations):
feed_dict = {}
if 'generate' in dir(data_generator): # This is for sinusoid only
batch_x, batch_y, amp, phase = data_generator.generate()
if FLAGS.baseline == 'oracle': # NOTE - this flag is specific to sinusoid
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
for i in range(FLAGS.meta_batch_size):
batch_x[i, :, 1] = amp[i]
batch_x[i, :, 2] = phase[i]
# a = base-train, b = base-test
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:, num_classes*FLAGS.update_batch_size:, :]
labelb = batch_y[:, num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb}
if itr < FLAGS.pretrain_iterations:
input_tensors = [model.pretrain_op]
else:
input_tensors = [model.metatrain_op] # metatrain_op is a tf Operation that does the meta update with Adam
if (itr % SUMMARY_INTERVAL == 0 or itr % PRINT_INTERVAL == 0):
# Add all the ops together in one big list, to evaluate them, and print I guess
input_tensors.extend([model.summ_op, model.total_loss1, model.total_losses2[FLAGS.num_updates-1]])
if model.classification:
input_tensors.extend([model.total_accuracy1, model.total_accuracies2[FLAGS.num_updates-1]])
# Do one full meta train step
result = sess.run(input_tensors, feed_dict)
if itr % SUMMARY_INTERVAL == 0:
prelosses.append(result[-2])
if FLAGS.log:
train_writer.add_summary(result[1], itr)
postlosses.append(result[-1])
if (itr!=0) and itr % PRINT_INTERVAL == 0:
if itr < FLAGS.pretrain_iterations:
print_str = 'Pretrain Iteration ' + str(itr)
else:
print_str = 'Iteration ' + str(itr - FLAGS.pretrain_iterations)
print_str += ': ' + str(np.mean(prelosses)) + ', ' + str(np.mean(postlosses))
print(print_str)
prelosses, postlosses = [], []
if (itr!=0) and itr % SAVE_INTERVAL == 0:
saver.save(sess, FLAGS.logdir + '/' + exp_string + '/model' + str(itr))
if (itr+1) % 2000 == 0:
meta_lr_damped = meta_lr_damped*0.5
# sinusoid is infinite data, so no need to test on meta-validation set.
if (itr!=0) and itr % TEST_PRINT_INTERVAL == 0 and FLAGS.datasource !='sinusoid':
if 'generate' not in dir(data_generator):
feed_dict = {}
if model.classification:
input_tensors = [model.metaval_total_accuracy1, model.metaval_total_accuracies2[FLAGS.num_updates-1], model.summ_op]
else:
input_tensors = [model.metaval_total_loss1, model.metaval_total_losses2[FLAGS.num_updates-1], model.summ_op]
feed_dict = {model.meta_lr: meta_lr_damped}
else:
batch_x, batch_y, amp, phase = data_generator.generate(train=False)
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:, num_classes*FLAGS.update_batch_size:, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
labelb = batch_y[:, num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb, model.meta_lr: 0.0}
if model.classification:
input_tensors = [model.total_accuracy1, model.total_accuracies2[FLAGS.num_updates-1]]
else:
input_tensors = [model.total_loss1, model.total_losses2[FLAGS.num_updates-1]]
# This session run is to evaluate
result = sess.run(input_tensors, feed_dict)
print('Validation results: ' + str(result[0]) + ', ' + str(result[1]))
saver.save(sess, FLAGS.logdir + '/' + exp_string + '/model' + str(itr))
# calculated for omniglot
NUM_TEST_POINTS = 600
def test(model, saver, sess, exp_string, data_generator, test_num_updates=None):
"""Tests a meta-learned model
Args:
model: The class object which is the model we are training on
saver: TensorFlow saver object to keep last (10) trainable variables
sess: TensorFlow session object signifying the session on which is trained
exp_string: String which is used as a folder name to export results to
data_generator: data_generator object that generates the right data for the meta learning problem at hand
test_num_updates: How many updates are done during testing
"""
num_classes = data_generator.num_classes # for classification, 1 otherwise
np.random.seed(1)
random.seed(1)
metaval_accuracies = []
metaval_labels = []
for _ in range(NUM_TEST_POINTS): # NUM_TEST_POINTS = amount of test tasks
if 'generate' not in dir(data_generator):
feed_dict = {}
feed_dict = {model.meta_lr : 0.0}
else: # for sinusoid
batch_x, batch_y, amp, phase = data_generator.generate(train=False)
if FLAGS.baseline == 'oracle': # NOTE - this flag is specific to sinusoid
batch_x = np.concatenate([batch_x, np.zeros([batch_x.shape[0], batch_x.shape[1], 2])], 2)
batch_x[0, :, 1] = amp[0]
batch_x[0, :, 2] = phase[0]
inputa = batch_x[:, :num_classes*FLAGS.update_batch_size, :]
inputb = batch_x[:,num_classes*FLAGS.update_batch_size:, :]
labela = batch_y[:, :num_classes*FLAGS.update_batch_size, :]
labelb = batch_y[:,num_classes*FLAGS.update_batch_size:, :]
feed_dict = {model.inputa: inputa, model.inputb: inputb, model.labela: labela, model.labelb: labelb, model.meta_lr: 0.0}
result = sess.run([model.test_accuraciesa] + model.test_accuraciesb, feed_dict)
labelas, labelbs = sess.run([model.labelas, model.labelbs], feed_dict)
metaval_accuracies.append(result)
metaval_labels.append([labelas, labelbs])
metaval_accuracies = np.array(metaval_accuracies)
metaval_labels = np.sum(np.array(metaval_labels), axis=0)
means = np.mean(metaval_accuracies, 0)
stds = np.std(metaval_accuracies, 0)
ci95 = 1.96*stds/np.sqrt(NUM_TEST_POINTS)
#print(metaval_accuracies)
print(metaval_labels)
print('Mean validation accuracy/loss, stddev, and confidence intervals')
print((means, stds, ci95))
out_filename = FLAGS.logdir +'/'+ exp_string + '/' + 'test_ubs' + str(FLAGS.update_batch_size) + '_stepsize' + str(FLAGS.update_lr) + '.csv'
out_pkl = FLAGS.logdir +'/'+ exp_string + '/' + 'test_ubs' + str(FLAGS.update_batch_size) + '_stepsize' + str(FLAGS.update_lr) + '.pkl'
with open(out_pkl, 'wb') as f:
pickle.dump({'mses': metaval_accuracies}, f)
with open(out_filename, 'w') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(['update'+str(i) for i in range(len(means))])
writer.writerow(means)
writer.writerow(stds)
writer.writerow(ci95)
def main():
""" Puts everything in place to meta-learn and test """
test_num_updates = 1 # Base learner is linear regression, so only one step required
if FLAGS.train == False:
orig_meta_batch_size = FLAGS.meta_batch_size
# always use meta batch size of 1 when testing.
FLAGS.meta_batch_size = 1
if FLAGS.datasource == 'sinusoid':
# DataGenerator(num_samples_per_class, batch_size, config={})
data_generator = DataGenerator(FLAGS.update_batch_size*2, FLAGS.meta_batch_size)
else: # Dealing with a non 'sinusoid' dataset here
if FLAGS.metatrain_iterations == 0 and (FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs'):
assert FLAGS.meta_batch_size == 1
assert FLAGS.update_batch_size == 1
data_generator = DataGenerator(1, FLAGS.meta_batch_size) # only use one datapoint,
else:
if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs': # use 15 val examples
if FLAGS.train: # following Ravi: "15 examples per class were used for evaluating the post-update meta-gradient"
# DataGenerator(number_of_images_per_class, number_of_tasks_in_batch)
data_generator = DataGenerator(FLAGS.update_batch_size+15, FLAGS.meta_batch_size)
else: # we're in the testing phase (not train), FLAGS.meta_batch_size = 1
data_generator = DataGenerator(FLAGS.update_batch_size*2, FLAGS.meta_batch_size)
else: # this is for omniglot
data_generator = DataGenerator(FLAGS.update_batch_size*2, FLAGS.meta_batch_size)
dim_output = data_generator.dim_output # number of classes, e.g. 5 for miniImagenet tasks
dim_input = data_generator.dim_input # np.prod(self.img_size) for images
if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs':
tf_data_load = True
num_classes = data_generator.num_classes
if FLAGS.train: # only construct training model if needed
# meta train : num_total_batches = 200000 (number of tasks, not number of meta-iterations)
random.seed(5)
image_tensor, label_tensor = data_generator.make_data_tensor()
inputa = tf.slice(image_tensor, [0,0,0], [-1,num_classes*FLAGS.update_batch_size, -1]) # slice(tensor, begin, slice_size)
inputb = tf.slice(image_tensor, [0,num_classes*FLAGS.update_batch_size, 0], [-1,-1,-1]) # The extra 15 add here
labela = tf.slice(label_tensor, [0,0,0], [-1,num_classes*FLAGS.update_batch_size, -1])
labelb = tf.slice(label_tensor, [0,num_classes*FLAGS.update_batch_size, 0], [-1,-1,-1])
input_tensors = {'inputa': inputa, 'inputb': inputb, 'labela': labela, 'labelb': labelb}
# meta val: num_total_batches = 600 (number of tasks, not number of meta-iterations)
random.seed(6)
image_tensor, label_tensor = data_generator.make_data_tensor(train=False)
inputa = tf.slice(image_tensor, [0,0,0], [-1,num_classes*FLAGS.update_batch_size, -1]) # slice the training examples here
inputb = tf.slice(image_tensor, [0,num_classes*FLAGS.update_batch_size, 0], [-1,-1,-1])
labela = tf.slice(label_tensor, [0,0,0], [-1,num_classes*FLAGS.update_batch_size, -1])
labelb = tf.slice(label_tensor, [0,num_classes*FLAGS.update_batch_size, 0], [-1,-1,-1])
metaval_input_tensors = {'inputa': inputa, 'inputb': inputb, 'labela': labela, 'labelb': labelb}
else:
tf_data_load = False
input_tensors = None
model = R2D2_paper(dim_input, dim_output, test_num_updates=test_num_updates) # test_num_updates = eval on at least one update for training, 10 testing
if FLAGS.train or not tf_data_load:
model.construct_model(input_tensors=input_tensors, prefix='metatrain_')
if tf_data_load:
model.construct_model(input_tensors=metaval_input_tensors, prefix='metaval_')
# Op to retrieve summaries
model.summ_op = tf.summary.merge_all()
# keep last 10 copies of trainable variables
saver = loader = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES), max_to_keep=10)
# remove the need to explicitly pass this Session object to run ops
sess = tf.InteractiveSession()
if FLAGS.train == False:
# change to original meta batch size when loading model.
FLAGS.meta_batch_size = orig_meta_batch_size
if FLAGS.train_update_batch_size == -1:
FLAGS.train_update_batch_size = FLAGS.update_batch_size
if FLAGS.train_update_lr == -1:
FLAGS.train_update_lr = FLAGS.update_lr
# cls = no of classes
# mbs = meta batch size
# ubs = update batch size
# numstep = number of INNER GRADIENT updates
# updatelr = inner gradient step
exp_string = 'cls_'+str(FLAGS.num_classes)+'.mbs_'+str(FLAGS.meta_batch_size) + '.ubs_' + str(FLAGS.train_update_batch_size) + '.numstep' + str(FLAGS.num_updates) + '.updatelr' + str(FLAGS.train_update_lr)
if FLAGS.num_filters != 64:
exp_string += 'hidden' + str(FLAGS.num_filters)
if FLAGS.max_pool:
exp_string += 'maxpool'
if FLAGS.stop_grad:
exp_string += 'stopgrad'
if FLAGS.baseline:
exp_string += FLAGS.baseline
if FLAGS.norm == 'batch_norm':
exp_string += 'batchnorm'
elif FLAGS.norm == 'layer_norm':
exp_string += 'layernorm'
elif FLAGS.norm == 'None':
exp_string += 'nonorm'
else:
print('Norm setting not recognized.')
resume_itr = 0
model_file = None
# Initialize all variables
tf.global_variables_initializer().run()
# starts threads for all queue runners collected in the graph
tf.train.start_queue_runners()
if FLAGS.resume or not FLAGS.train:
model_file = tf.train.latest_checkpoint(FLAGS.logdir + '/' + exp_string)
if FLAGS.test_iter > 0:
model_file = model_file[:model_file.index('model')] + 'model' + str(FLAGS.test_iter)
if model_file:
ind1 = model_file.index('model')
resume_itr = int(model_file[ind1+5:])
print("Restoring model weights from " + model_file)
saver.restore(sess, model_file)
if FLAGS.train:
train(model, saver, sess, exp_string, data_generator, resume_itr)
else:
test(model, saver, sess, exp_string, data_generator, test_num_updates)
if __name__ == "__main__":
main()