-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_corr.py
36 lines (25 loc) · 1.17 KB
/
plot_corr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def transform_xlabs(labs):
return [str(e[0]) + "-" + str(e[1]) for e in labs]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Plot data")
parser.add_argument("file", type=str, help="Path to the file with correlations")
parser.add_argument("--pdf", action="store_true", default=False, help="Output pdf file instead of png")
parser.add_argument("--out", type=str, default="out.png", help="Filename output")
args = parser.parse_args()
ext = ".png"
if args.pdf:
ext = ".pdf"
f = Path(args.file)
df = pd.read_csv(f)
ylabs = df.columns[2:]
xlabs = transform_xlabs(df[df.columns[:2]].values)
plt.figure(figsize=(6, 20))
sns.heatmap(df[df.columns[2:]].transpose(), xticklabels=xlabs, yticklabels=ylabs, linewidths=.5, cmap=sns.diverging_palette(220, 20, sep=20, as_cmap=True), square=True, cbar_kws={"shrink": 1, "aspect": 100})
plt.title(f.with_suffix("").name + "\nPearson Correlation Coefficients", loc="right")
plt.tight_layout()
plt.savefig(Path(args.out).with_suffix(ext))