-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathBRATS2015.py
253 lines (204 loc) · 8.63 KB
/
BRATS2015.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#%%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import skimage.io as io
import skimage.transform as trans
import random as r
from keras.models import Sequential,load_model,Model,model_from_json
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D,concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.layers import Input, merge, UpSampling2D
from keras.callbacks import ModelCheckpoint
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras import backend as K
K.tensorflow_backend._get_available_gpus()
import SimpleITK as sitk
#K.set_image_data_format("channels_first")
K.set_image_dim_ordering("th")
img_size = 120 #original img size is 240*240
smooth = 1
num_of_aug = 1
num_epoch = 20
#%%
import glob
def create_data(src, mask, label=False, resize=(155,img_size,img_size)):
files = glob.glob(src + mask, recursive=True)
imgs = []
print('Processing---', mask)
for file in files:
img = io.imread(file, plugin='simpleitk')
img = trans.resize(img, resize, mode='constant')
if label:
#img[img == 4] = 1 #turn enhancing tumor into necrosis
#img[img != 1] = 0 #only left enhancing tumor + necrosis
img[img != 0] = 1 #Region 1 => 1+2+3+4 complete tumor
img = img.astype('float32')
else:
img = (img-img.mean()) / img.std() #normalization => zero mean !!!care for the std=0 problem
for slice in range(50,130):
img_t = img[slice,:,:]
img_t =img_t.reshape((1,)+img_t.shape)
img_t =img_t.reshape((1,)+img_t.shape) #become rank 4
img_g = augmentation(img_t,num_of_aug)
for n in range(img_g.shape[0]):
imgs.append(img_g[n,:,:,:])
name = 'y_'+ str(img_size) if label else 'x_'+ str(img_size)
np.save(name, np.array(imgs).astype('float32')) # save at home
print('Saved', len(files), 'to', name)
#%%
def n4itk(img): #must input with sitk img object
img = sitk.Cast(img, sitk.sitkFloat32)
img_mask = sitk.BinaryNot(sitk.BinaryThreshold(img, 0, 0)) ## Create a mask spanning the part containing the brain, as we want to apply the filter to the brain image
corrected_img = sitk.N4BiasFieldCorrection(img, img_mask)
return corrected_img
#%%
def augmentation(scans,n): #input img must be rank 4
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=25,
#width_shift_range=0.3,
#height_shift_range=0.3,
horizontal_flip=True,
vertical_flip=True,
zoom_range=False)
i=0
scans_g=scans.copy()
for batch in datagen.flow(scans, batch_size=1, seed=1000):
scans_g=np.vstack([scans_g,batch])
i += 1
if i == n:
break
''' remember arg + labels
i=0
labels_g=labels.copy()
for batch in datagen.flow(labels, batch_size=1, seed=1000):
labels_g=np.vstack([labels_g,batch])
i += 1
if i > n:
break
return ((scans_g,labels_g))'''
return scans_g
#scans_g,labels_g = augmentation(img,img1, 10)
#X_train = X_train.reshape(X_train.shape[0], 1, img_size, img_size)
#%%
'''
Model -
structure:
'''
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def unet_model():
inputs = Input((1, img_size, img_size))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs) # KERNEL =3 STRIDE =3
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model
#%%
# catch all T1c.mha
create_data('/home/andy/Brain_tumor/BRATS2015/BRATS2015_Training/HGG/', '**/*Flair*.mha', label=False, resize=(155,img_size,img_size))
create_data('/home/andy/Brain_tumor/BRATS2015/BRATS2015_Training/HGG/', '**/*OT*.mha', label=True, resize=(155,img_size,img_size))
#%%
# catch BRATS2017 Data
create_data('/home/andy/Brain_tumor/BRATS2017/Pre-operative_TCGA_GBM_NIfTI_and_Segmentations/', '**/*_flair.nii.gz', label=False, resize=(155,img_size,img_size))
create_data('/home/andy/Brain_tumor/BRATS2017/Pre-operative_TCGA_GBM_NIfTI_and_Segmentations/', '**/*_GlistrBoost_ManuallyCorrected.nii.gz', label=True, resize=(155,img_size,img_size))
#%%
# load numpy array data
x = np.load('/home/andy/x_{}.npy'.format(img_size))
y = np.load('/home/andy/y_{}.npy'.format(img_size))
#%%
#training
num = 31100
model = unet_model()
history = model.fit(x, y, batch_size=16, validation_split=0.2 ,nb_epoch= num_epoch, verbose=1, shuffle=True)
pred = model.predict(x[num:num+100])
#%%
# save model and weights
model.save('aug{}_{}_epoch{}'.format(num_of_aug,img_size,num_epoch))
model.save_weights('weights_{}_{}.h5'.format(img_size,num_epoch))
#model.load_weights('weights.h5')
#%%
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['dice_coef'])
plt.plot(history.history['val_dice_coef'])
plt.title('model dice_coef')
plt.ylabel('dice_coef')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
#%%
#show results
for n in range(2):
i = int(r.random() * pred.shape[0])
plt.figure(figsize=(15,10))
plt.subplot(131)
plt.title('Input'+str(i+num))
plt.imshow(x[i+num, 0, :, :],cmap='gray')
plt.subplot(132)
plt.title('Ground Truth')
plt.imshow(y[i+num, 0, :, :],cmap='gray')
plt.subplot(133)
plt.title('Prediction')
plt.imshow(pred[i, 0, :, :],cmap='gray')
plt.show()
#%%
'''
animation
'''
import matplotlib.animation as animation
def animate(pat, gifname):
# Based on @Zombie's code
fig = plt.figure()
anim = plt.imshow(pat[50])
def update(i):
anim.set_array(pat[i])
return anim,
a = animation.FuncAnimation(fig, update, frames=range(len(pat)), interval=50, blit=True)
a.save(gifname, writer='imagemagick')
#animate(pat, 'test.gif')