-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_group_request_by_min.py
46 lines (39 loc) · 1.78 KB
/
03_group_request_by_min.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import pandas as pd
from tqdm import tqdm
from collections import namedtuple
from typing import List
# change the csv log root
# if your directory is not consisted with README
ROOT = "CSVLog"
OUTPUT = "GroupedLog"
Request = namedtuple("Request", ["timestamp", "num_request", "size"])
def read_and_group(csv_path: str, out_dir: str) -> pd.DataFrame:
df = pd.read_csv(csv_path, names=["timestamp", "size"], parse_dates=["timestamp"])
timestamps = df["timestamp"].to_numpy()
sizes = df["size"].to_numpy()
# do not use df.groupby because the algorithm complexity is O(n^2), which is really slow
# use the follwing algorithm optimized with comlexity O(n)
requests: List[Request] = []
# current procssing minute
current_minute = timestamps[0].astype("datetime64[m]")
minute_request = 0
minute_size = 0
for idx in range(len(timestamps)):
t_minute = timestamps[idx].astype("datetime64[m]")
if current_minute != t_minute: # the next minute is coming
requests.append(Request(current_minute, minute_request, minute_size))
minute_request = 0
minute_size = 0
current_minute = t_minute
minute_request += 1
minute_size += sizes[idx]
# don't forget the last minute
requests.append(Request(current_minute, minute_request, minute_size))
requests = Request(*zip(*requests))
pd.DataFrame.from_dict(data={"timestamp": requests.timestamp, "num_request": requests.num_request, "size": requests.size}).to_csv(os.path.join(out_dir, csv_path.split(os.path.sep)[-1]), header=False, index=False)
if __name__ == "__main__":
if not os.path.exists(OUTPUT):
os.makedirs(OUTPUT)
for file_name in tqdm(os.listdir(ROOT)):
read_and_group(os.path.join(ROOT, file_name), OUTPUT)