-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgen_mix.py
363 lines (307 loc) · 14.8 KB
/
gen_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""
This script is to generate mixture speech with noise
The code is based on the code of Pandey
Author: Andong Li
Time: 2019/12/15
"""
import argparse
import random
import sys
import os
import json
import time
import h5py
import numpy as np
import soundfile as sf
def gen_train_mix(args):
print('Begin to generate mix utterances for train dataset')
## read and write path
train_speech_path = os.path.join(args.speech_path, 'train')
train_noise_path = os.path.join(args.noise_path, 'seen noise')
train_save_path = os.path.join(args.mixture_path, 'train')
os.makedirs(train_save_path, exist_ok= True)
train_raw_clean_path = os.path.join(train_save_path, 'raw clean')
os.makedirs(train_raw_clean_path, exist_ok= True)
train_raw_mix_path = os.path.join(train_save_path, 'raw mix')
os.makedirs(train_raw_mix_path, exist_ok= True)
train_json_path = os.path.join(args.json_path, 'train')
os.makedirs(train_json_path, exist_ok= True)
# parameter configurations
fs = args.fs
train_snr_list = args.train_snr_list
mix_num = args.train_mix_num
train_noise = 'seen_long_noise.bin'
speech_list = os.listdir(train_speech_path)
speech_list.sort()
mix_json = []
clean_json = []
# read noise bin
n = np.memmap(os.path.join(train_noise_path, train_noise), dtype = np.float32, mode = 'r')
for count in range(mix_num):
random.seed(time.time())
s_c = random.randint(0, len(speech_list)-1)
snr_c = random.randint(0, len(train_snr_list)- 1)
speech_name = speech_list[s_c]
s, s_fs = sf.read(os.path.join(train_speech_path, speech_name))
if s_fs != fs:
raise ValueError('Invalid sample rate!')
snr = train_snr_list[snr_c]
## choose a point to cut the noise
# if n.size >= s.size:
# noise_begin = random.randint(0, n.size - s.size)
# n_t = n[noise_begin: noise_begin + s.size]
# else:
# rep = np.ceil(s.size/n.size)
# n_t = n.repeat(rep)
# n_t = n_t[0:len(s)]
noise_begin = random.randint(0, n.size - s.size)
while np.sum(n[noise_begin:noise_begin+ s.size]** 2.0) == 0.0:
noise_begin = random.randint(0, n.size - s.size)
n_t = n[noise_begin: noise_begin + s.size]
alpha = np.sqrt(np.sum(s ** 2.0) / (np.sum(n_t ** 2.0) * (10.0 ** (snr / 10.0))))
snr_check = 10.0 * np.log10(np.sum(s ** 2.0) / (np.sum((n_t * alpha) ** 2.0)))
mix = s + alpha * n_t
# save the file with dat file format
file_name = os.path.splitext(speech_name)[0]
snr_name = "%s" % (snr)
mix_file_name = "%s_%s_id_%s_mix.wav" % (file_name, snr_name, count+1)
clean_file_name = "%s_%s_id_%s_clean.wav" % (file_name, snr_name, count+1)
mix_file_path = os.path.join(train_raw_mix_path, mix_file_name)
clean_file_path = os.path.join(train_raw_clean_path, clean_file_name)
mix_json.append(mix_file_path)
clean_json.append(clean_file_path)
# write wav file
sf.write(mix_file_path, mix, fs)
sf.write(clean_file_path, s, fs)
print('Speech index %s has been generated' %(count+ 1))
# save json file
with open(os.path.join(train_json_path, 'mix.json') ,'w') as f :
json.dump(mix_json, f, indent= 4)
with open(os.path.join(train_json_path, 'clean.json'), 'w') as f:
json.dump(clean_json, f, indent= 4)
def gen_cv_mix(args):
print('Begin to generate mix utterances for cv dataset')
## read and write path
cv_speech_path = os.path.join(args.speech_path, 'cv')
cv_noise_path = os.path.join(args.noise_path, 'seen noise')
cv_save_path = os.path.join(args.mixture_path, 'cv')
os.makedirs(cv_save_path, exist_ok= True)
cv_raw_clean_path = os.path.join(cv_save_path, 'raw clean')
os.makedirs(cv_raw_clean_path, exist_ok= True)
cv_raw_mix_path = os.path.join(cv_save_path, 'raw mix')
os.makedirs(cv_raw_mix_path, exist_ok= True)
cv_json_path = os.path.join(args.json_path, 'cv')
os.makedirs(cv_json_path, exist_ok= True)
# parameter configurations
fs = args.fs
cv_snr_list = args.train_snr_list
mix_num = args.cv_mix_num
cv_noise = 'seen_long_noise.bin'
speech_list = os.listdir(cv_speech_path)
speech_list.sort()
mix_json = []
clean_json = []
# read noise bin
n = np.memmap(os.path.join(cv_noise_path, cv_noise), dtype = np.float32, mode = 'r')
for count in range(mix_num):
random.seed(time.time())
s_c = random.randint(0, len(speech_list)-1)
snr_c = random.randint(0, len(cv_snr_list)- 1)
speech_name = speech_list[s_c]
s, s_fs = sf.read(os.path.join(cv_speech_path, speech_name))
if s_fs != fs:
raise ValueError('Invalid sample rate!')
snr = cv_snr_list[snr_c]
## choose a point to cut the noise
# if n.size >= s.size:
# noise_begin = random.randint(0, n.size - s.size)
# n_t = n[noise_begin: noise_begin + s.size]
# else:
# rep = np.ceil(s.size/n.size)
# n_t = n.repeat(rep)
# n_t = n_t[0:len(s)]
noise_begin = random.randint(0, n.size - s.size)
while np.sum(n[noise_begin:noise_begin+ s.size]** 2.0) == 0.0:
noise_begin = random.randint(0, n.size - s.size)
n_t = n[noise_begin: noise_begin + s.size]
alpha = np.sqrt(np.sum(s ** 2.0) / (np.sum(n_t ** 2.0) * (10.0 ** (snr / 10.0))))
snr_check = 10.0 * np.log10(np.sum(s ** 2.0) / (np.sum((n_t * alpha) ** 2.0)))
mix = s + alpha * n_t
# save the file with dat file format
file_name = os.path.splitext(speech_name)[0]
snr_name = "%s" % (snr)
mix_file_name = "%s_%s_id_%s_mix.wav" % (file_name, snr_name, count + 1)
clean_file_name = "%s_%s_id_%s_clean.wav" % (file_name, snr_name, count + 1)
mix_file_path = os.path.join(cv_raw_mix_path, mix_file_name)
clean_file_path = os.path.join(cv_raw_clean_path, clean_file_name)
mix_json.append(mix_file_path)
clean_json.append(clean_file_path)
# write wav file
sf.write(mix_file_path, mix, fs)
sf.write(clean_file_path, s, fs)
print('Speech index %s has been generated' %(count+ 1))
# save json file
with open(os.path.join(cv_json_path, 'mix.json') ,'w') as f :
json.dump(mix_json, f, indent= 4)
with open(os.path.join(cv_json_path, 'clean.json'), 'w') as f:
json.dump(clean_json, f, indent= 4)
def gen_seen_test_mix(args):
print('Begin to generate mix utterances for seen test dataset')
## read and write path
test_speech_path = os.path.join(args.speech_path, 'test')
test_noise_path = os.path.join(args.noise_path, 'seen noise')
test_save_path = os.path.join(args.mixture_path, 'seen_test')
os.makedirs(test_save_path, exist_ok= True)
test_raw_clean_path = os.path.join(test_save_path, 'raw clean')
os.makedirs(test_raw_clean_path, exist_ok= True)
test_raw_mix_path = os.path.join(test_save_path, 'raw mix')
os.makedirs(test_raw_mix_path, exist_ok= True)
test_json_path = os.path.join(args.json_path, 'seen_test')
os.makedirs(test_json_path, exist_ok= True)
# parameter configurations
fs = args.fs
test_snr_list = args.test_snr_list
mix_num = args.test_mix_num
test_noise = 'seen_long_noise.bin'
speech_list = os.listdir(test_speech_path)
speech_list.sort()
mix_json = []
clean_json = []
# read noise bin
n = np.memmap(os.path.join(test_noise_path, test_noise), dtype = np.float32, mode = 'r')
for count in range(mix_num):
random.seed(time.time())
s_c = random.randint(0, len(speech_list)-1)
snr_c = random.randint(0, len(test_snr_list)- 1)
speech_name = speech_list[s_c]
s, s_fs = sf.read(os.path.join(test_speech_path, speech_name))
if s_fs != fs:
raise ValueError('Invalid sample rate!')
snr = test_snr_list[snr_c]
## choose a point to cut the noise
# if n.size >= s.size:
# noise_begin = random.randint(0, n.size - s.size)
# n_t = n[noise_begin: noise_begin + s.size]
# else:
# rep = np.ceil(s.size/n.size)
# n_t = n.repeat(rep)
# n_t = n_t[0:len(s)]
noise_begin = random.randint(0, n.size - s.size)
while np.sum(n[noise_begin:noise_begin+ s.size]** 2.0) == 0.0:
noise_begin = random.randint(0, n.size - s.size)
n_t = n[noise_begin: noise_begin + s.size]
alpha = np.sqrt(np.sum(s ** 2.0) / (np.sum(n_t ** 2.0) * (10.0 ** (snr / 10.0))))
snr_check = 10.0 * np.log10(np.sum(s ** 2.0) / (np.sum((n_t * alpha) ** 2.0)))
mix = s + alpha * n_t
# save the file with dat file format
file_name = os.path.splitext(speech_name)[0]
snr_name = "%s" % (snr)
mix_file_name = "%s_%s_id_%s_mix.wav" % (file_name, snr_name, count + 1)
clean_file_name = "%s_%s_id_%s_clean.wav" % (file_name, snr_name, count + 1)
mix_file_path = os.path.join(test_raw_mix_path, mix_file_name)
clean_file_path = os.path.join(test_raw_clean_path, clean_file_name)
mix_json.append(mix_file_path)
clean_json.append(clean_file_path)
# write wav file
sf.write(mix_file_path, mix, fs)
sf.write(clean_file_path, s, fs)
print('Speech index %s has been generated' %(count+ 1))
# save json file
with open(os.path.join(test_json_path, 'mix.json'), 'w') as f :
json.dump(mix_json, f, indent= 4)
with open(os.path.join(test_json_path, 'clean.json'), 'w') as f:
json.dump(clean_json, f, indent= 4)
def gen_unseen_test_mix(args):
print('Begin to generate mix utterances for unseen test dataset')
## read and write path
test_speech_path = os.path.join(args.speech_path, 'test')
test_noise_path = os.path.join(args.noise_path, 'unseen noise')
test_save_path = os.path.join(args.mixture_path, 'unseen_test')
os.makedirs(test_save_path, exist_ok= True)
test_raw_clean_path = os.path.join(test_save_path, 'raw clean')
os.makedirs(test_raw_clean_path, exist_ok= True)
test_raw_mix_path = os.path.join(test_save_path, 'raw mix')
os.makedirs(test_raw_mix_path, exist_ok= True)
test_json_path = os.path.join(args.json_path, 'unseen_test')
os.makedirs(test_json_path, exist_ok= True)
# parameter configurations
fs = args.fs
test_snr_list = args.test_snr_list
mix_num = args.test_mix_num
test_noise = 'unseen_long_noise.bin'
speech_list = os.listdir(test_speech_path)
speech_list.sort()
mix_json = []
clean_json = []
# read noise bin
n = np.memmap(os.path.join(test_noise_path, test_noise), dtype = np.float32, mode = 'r')
for count in range(mix_num):
random.seed(time.time())
s_c = random.randint(0, len(speech_list)-1)
snr_c = random.randint(0, len(test_snr_list)- 1)
speech_name = speech_list[s_c]
s, s_fs = sf.read(os.path.join(test_speech_path, speech_name))
if s_fs != fs:
raise ValueError('Invalid sample rate!')
snr = test_snr_list[snr_c]
## choose a point to cut the noise
# if n.size >= s.size:
# noise_begin = random.randint(0, n.size - s.size)
# n_t = n[noise_begin: noise_begin + s.size]
# else:
# rep = np.ceil(s.size/n.size)
# n_t = n.repeat(rep)
# n_t = n_t[0:len(s)]
noise_begin = random.randint(0, n.size - s.size)
while np.sum(n[noise_begin:noise_begin+ s.size]** 2.0) == 0.0:
noise_begin = random.randint(0, n.size - s.size)
n_t = n[noise_begin: noise_begin + s.size]
alpha = np.sqrt(np.sum(s ** 2.0) / (np.sum(n_t ** 2.0) * (10.0 ** (snr / 10.0))))
snr_check = 10.0 * np.log10(np.sum(s ** 2.0) / (np.sum((n_t * alpha) ** 2.0)))
mix = s + alpha * n_t
# save the file with dat file format
file_name = os.path.splitext(speech_name)[0]
snr_name = "%s" % (snr)
mix_file_name = "%s_%s_id_%s_mix.wav" % (file_name, snr_name, count + 1)
clean_file_name = "%s_%s_id_%s_clean.wav" % (file_name, snr_name, count + 1)
mix_file_path = os.path.join(test_raw_mix_path, mix_file_name)
clean_file_path = os.path.join(test_raw_clean_path, clean_file_name)
mix_json.append(mix_file_path)
clean_json.append(clean_file_path)
# write wav file
sf.write(mix_file_path, mix, fs)
sf.write(clean_file_path, s, fs)
print('Speech index %s has been generated' %(count+ 1))
# save json file
with open(os.path.join(test_json_path, 'mix.json'), 'w') as f :
json.dump(mix_json, f, indent= 4)
with open(os.path.join(test_json_path, 'clean.json'), 'w') as f:
json.dump(clean_json, f, indent= 4)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Timit dataset, to generate the mix dataset")
parser.add_argument('--speech_path', type= str, default= "/media/Dataset/STIMIT/clean",
help= 'The path to the clean utterances from TIMIT dataset')
parser.add_argument('--mixture_path', type = str, default= "/media/Dataset/STIMIT/mixture",
help = 'The path to the incomming mixture utterances')
parser.add_argument('--noise_path', type = str, default = "/media/Dataset/STIMIT/noise",
help = 'The path to the noise signals')
parser.add_argument('--json_path', type = str, default = "/media/Dataset/STIMIT/json",
help = 'The path to generate json files')
parser.add_argument('--fs', type = int, default= 16000,
help = 'sampling rate')
parser.add_argument('--train_snr_list', type = list, default = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
help = "snr list for train dataset")
parser.add_argument('--test_snr_list', type=list, default=[-5, -2],
help="snr list for test dataset")
parser.add_argument('--train_mix_num', type = int, default= 10000,
help = "the times for snr mixing in train case")
parser.add_argument('--cv_mix_num', type=int, default = 2000,
help="the times for snr mixing in cv case")
parser.add_argument('--test_mix_num', type=int, default= 400,
help="the times for snr mixing in test case")
gen_args = parser.parse_args()
print(gen_args)
gen_train_mix(gen_args)
gen_cv_mix(gen_args)
gen_seen_test_mix(gen_args)
gen_unseen_test_mix(gen_args)