forked from FWGS/MiniUTL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutlmap.h
371 lines (304 loc) · 10.6 KB
/
utlmap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//========= Copyright (C) 1996-2005, Valve Corporation, All rights reserved. ==//
//
// Purpose:
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLMAP_H
#define UTLMAP_H
#ifdef _WIN32
#pragma once
#endif
#include "utlrbtree.h"
//-----------------------------------------------------------------------------
//
// Purpose: An associative container.
//
//-----------------------------------------------------------------------------
// This is a useful macro to iterate from start to end in order in a map
#define FOR_EACH_MAP( mapName, iteratorName ) \
for ( MAP_INDEX_TYPE( mapName ) iteratorName = (mapName).FirstInorder(); iteratorName != (mapName).InvalidIndex(); iteratorName = (mapName).NextInorder( iteratorName ) )
// faster iteration, but in an unspecified order
#define FOR_EACH_MAP_FAST( mapName, iteratorName ) \
for ( MAP_INDEX_TYPE( mapName ) iteratorName = 0; iteratorName < (mapName).MaxElement(); ++iteratorName ) if ( !(mapName).IsValidIndex( iteratorName ) ) continue; else
// faster iteration, but in an unspecified order
#define FOR_EACH_MAP_PTR_FAST( mapName, iteratorName ) \
for ( MAP_INDEX_TYPE( *mapName ) iteratorName = 0; iteratorName < (mapName)->MaxElement(); ++iteratorName ) if ( !(mapName)->IsValidIndex( iteratorName ) ) continue; else
// This is a useful macro to iterate from end to start (backwards) in order in a map
#define FOR_EACH_MAP_BACK( mapName, iteratorName ) \
for ( MAP_INDEX_TYPE( mapName ) iteratorName = (mapName).LastInorder(); iteratorName != (mapName).InvalidIndex(); iteratorName = (mapName).PrevInorder( iteratorName ) )
template <typename K, typename T, typename I = int, typename L = bool (*)( const K &, const K & ) >
class CUtlMap
{
public:
typedef K KeyType_t;
typedef T ElemType_t;
typedef I IndexType_t;
typedef L LessFunc_t;
// CUtlMap is implemented as a CUtlRBTree of Node_t elements
struct Node_t
{
KeyType_t key;
ElemType_t elem;
};
// constructor, destructor
// Left at growSize = 0, the memory will first allocate 1 element and double in size
// at each increment.
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
CUtlMap( int growSize = 0, int initSize = 0, LessFunc_t lessfunc = 0 )
: m_Tree( growSize, initSize, CKeyLess( lessfunc ) )
{
}
CUtlMap( LessFunc_t lessfunc )
: m_Tree( CKeyLess( lessfunc ) )
{
}
// gets particular elements
ElemType_t & Element( IndexType_t i ) { return m_Tree.Element( i ).elem; }
const ElemType_t & Element( IndexType_t i ) const { return m_Tree.Element( i ).elem; }
ElemType_t & operator[]( IndexType_t i ) { return m_Tree.Element( i ).elem; }
const ElemType_t & operator[]( IndexType_t i ) const { return m_Tree.Element( i ).elem; }
KeyType_t & Key( IndexType_t i ) { return m_Tree.Element( i ).key; }
const KeyType_t & Key( IndexType_t i ) const { return m_Tree.Element( i ).key; }
ElemType_t & ElementByLinearIndex( IndexType_t i ) { return m_Tree.ElementByLinearIndex( i ).elem; }
const ElemType_t & ElementByLinearIndex( IndexType_t i ) const { return m_Tree.ElementByLinearIndex( i ).elem; }
// Num elements
unsigned int Count() const { return m_Tree.Count(); }
// Max "size" of the vector
IndexType_t MaxElement() const { return m_Tree.MaxElement(); }
// Checks if a node is valid and in the map
bool IsValidIndex( IndexType_t i ) const { return m_Tree.IsValidIndex( i ); }
// Checks if a node is valid and in the map
bool IsValidLinearIndex( IndexType_t i ) const { return m_Tree.IsValidLinearIndex( i ); }
// Checks if the map as a whole is valid
bool IsValid() const { return m_Tree.IsValid(); }
// Invalid index
static IndexType_t InvalidIndex() { return INVALID_RBTREE_IDX; }
// Sets the less func
void SetLessFunc( LessFunc_t func )
{
m_Tree.SetLessFunc( CKeyLess( func ) );
}
// Insert method (inserts in order)
IndexType_t Insert( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.Insert( node, false );
}
IndexType_t Insert( const KeyType_t &key )
{
Node_t node;
node.key = key;
return m_Tree.Insert( node, false );
}
IndexType_t InsertWithDupes( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.Insert( node, true );
}
IndexType_t InsertWithDupes( const KeyType_t &key )
{
Node_t node;
node.key = key;
return m_Tree.Insert( node, true );
}
bool HasElement( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.HasElement( dummyNode );
}
// Find method
// This finds an occurrence of key, but if there
// are multiple you will get the highest one in the
// tree so you can make no assumptions about its order
IndexType_t Find( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.Find( dummyNode );
}
// FindFirst method
// This finds the first inorder occurrence of key
IndexType_t FindFirst( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.FindFirst( dummyNode );
}
// First element >= key
IndexType_t FindClosest( const KeyType_t &key, CompareOperands_t eFindCriteria ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.FindClosest( dummyNode, eFindCriteria );
}
const ElemType_t &FindElement( const KeyType_t &key, const ElemType_t &defaultValue ) const
{
IndexType_t i = Find( key );
if ( i == InvalidIndex() )
return defaultValue;
return Element( i );
}
// Remove methods
void RemoveAt( IndexType_t i ) { m_Tree.RemoveAt( i ); }
bool Remove( const KeyType_t &key )
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.Remove( dummyNode );
}
// remove all members, but leave the memory allocated by the container behind for reuse
void RemoveAll() { m_Tree.RemoveAll(); }
// Iteration
IndexType_t FirstInorder() const { return m_Tree.FirstInorder(); }
IndexType_t NextInorder( IndexType_t i ) const { return m_Tree.NextInorder( i ); }
IndexType_t PrevInorder( IndexType_t i ) const { return m_Tree.PrevInorder( i ); }
IndexType_t LastInorder() const { return m_Tree.LastInorder(); }
IndexType_t PrevInorderSameKey( IndexType_t i ) const
{
IndexType_t iPrev = PrevInorder( i );
if ( !IsValidIndex( iPrev ) )
return INVALID_RBTREE_IDX;
if ( Key(iPrev) != Key(i) )
return INVALID_RBTREE_IDX;
return iPrev;
}
IndexType_t NextInorderSameKey( IndexType_t i ) const
{
IndexType_t iNext = NextInorder( i );
if ( !IsValidIndex( iNext ) )
return INVALID_RBTREE_IDX;
if ( Key(iNext) != Key(i) )
return INVALID_RBTREE_IDX;
return iNext;
}
IndexType_t GetRoot() const
{
return m_Tree.Root();
}
// If you change the search key, this can be used to reinsert the
// element into the map.
void Reinsert( const KeyType_t &key, IndexType_t i )
{
m_Tree[i].key = key;
m_Tree.Reinsert(i);
}
// replace an element if the key already exists; otherwise, insert it
// note that this will leak element is a pointer type as
// there is no chance to delete the previous element
IndexType_t InsertOrReplace( const KeyType_t &key, const ElemType_t &insert )
{
// Insert already provides InsertOrReplace behavior
return Insert( key, insert );
}
// find element if the key already exists; otherwise, insert it
IndexType_t FindOrInsert( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.FindOrInsert( node );
}
// swap in place
void Swap( CUtlMap< K, T, I, L > &that )
{
m_Tree.Swap( that.m_Tree );
}
// Makes sure we have enough memory allocated to store a requested # of elements
void EnsureCapacity( int num )
{
m_Tree.EnsureCapacity( num );
}
// purge, which will free memory in the underlying container implementation
void Purge()
{
m_Tree.Purge();
}
// call delete on each element (as a pointer) and then purge
void PurgeAndDeleteElements()
{
FOR_EACH_MAP_FAST( *this, i )
delete this->Element(i);
Purge();
}
int CubAllocated() { return m_Tree.CubAllocated(); }
#ifdef DBGFLAG_VALIDATE
void Validate( CValidator &validator, const char *pchName );
void ValidateSelfAndElements( CValidator &validator, const char *pchName );
#endif // DBGFLAG_VALIDATE
protected:
// Disallow copy construction and assignment for now
CUtlMap( const CUtlMap &that );
CUtlMap& operator=( const CUtlMap &that );
class CKeyLess
{
public:
CKeyLess( LessFunc_t lessFunc ) : m_LessFunc(lessFunc) {}
bool operator!() const
{
return !m_LessFunc;
}
bool operator()( const Node_t &left, const Node_t &right ) const
{
return m_LessFunc( left.key, right.key );
}
LessFunc_t m_LessFunc;
};
typedef CUtlRBTree<Node_t, I, CKeyLess> CTree;
CTree *AccessTree() { return &m_Tree; }
CTree m_Tree;
public:
typedef typename CTree::ProxyTypeIterateUnordered ProxyTypeIterateUnordered;
ProxyTypeIterateUnordered& IterateUnordered() { return m_Tree.IterateUnordered(); }
const ProxyTypeIterateUnordered& IterateUnordered() const { return m_Tree.IterateUnordered(); }
};
// Same as CUtlMap, but less func defaults to be CDefLess instead of
// function pointer.
template <typename K, typename T, typename L = CDefLess<K> >
// using CUtlOrderedMap = CUtlMap< K, T, int, L >;
class CUtlOrderedMap : public CUtlMap<K, T, int, L>
{
};
//-----------------------------------------------------------------------------
// Data and memory validation
//-----------------------------------------------------------------------------
#ifdef DBGFLAG_VALIDATE
template <typename K, typename T, typename I, typename L >
void CUtlMap<K, T, I, L>::Validate( CValidator &validator, const char *pchName )
{
#ifdef _WIN32
validator.Push( typeid(*this).raw_name(), this, pchName );
#else
validator.Push( typeid(*this).name(), this, pchName );
#endif
m_Tree.Validate( validator, "m_Tree" );
validator.Pop();
}
#endif
#ifdef DBGFLAG_VALIDATE
template <typename K, typename T, typename I, typename L >
void CUtlMap<K, T, I, L>::ValidateSelfAndElements( CValidator &validator, const char *pchName )
{
#ifdef _WIN32
validator.Push( typeid(*this).raw_name(), this, pchName );
#else
validator.Push( typeid(*this).name(), this, pchName );
#endif
CValidateHelper< T > functor( validator );
m_Tree.Validate( validator, "m_Tree" );
FOR_EACH_MAP_FAST( *this, i )
{
Key( i ).Validate( validator, "Keys" );
functor( Element( i ), "Elements" );
}
validator.Pop();
}
#endif
//-----------------------------------------------------------------------------
#endif // UTLMAP_H