-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTrain.py
81 lines (59 loc) · 2.33 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
import cv2
import numpy as np
import os
cap = cv2.VideoCapture(0)
while True:
_, frame = cap.read()
frame = cv2.flip(frame, 1)
x1 = int(0.5*frame.shape[1])
y1 = 10
x2 = frame.shape[1]-10
y2 = int(0.5*frame.shape[1])
cv2.rectangle(frame, (x1-1, y1-1), (x2+1, y2+1), (255,0,0) ,1)
roi = frame[y1:y2, x1:x2]
roi = cv2.resize(roi, (64, 64))
cv2.imshow("Frame", frame)
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
_, roi = cv2.threshold(roi, 120, 255, cv2.THRESH_BINARY)
cv2.imshow("ROI", roi)
interrupt = cv2.waitKey(10)
cap.release()
cv2.destroyAllWindows()
classifier = Sequential()
classifier.add(Convolution2D(32, (3, 3), input_shape=(64, 64, 1), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Convolution2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=6, activation='softmax'))
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
traindata = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
testdata = ImageDataGenerator(rescale=1./255)
training_set = traindata.flow_from_directory('data/train',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')
test_set = testdata.flow_from_directory('data/test',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')
classifier.fit_generator(
training_set,
steps_per_epoch=600,
epochs=10,
validation_data=test_set,
validation_steps=30)
model_save = classifier