-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
46 lines (36 loc) · 1.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
# Function for graph visualization
def visualize(h, color):
# Create a TSNE object to plot into 2 dimensions data
# Take the values to plot, convert them into cpu object and finally to numpy
z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())
plt.figure(figsize=(10, 10))
# Don't show anything along x and y axis
plt.xticks([])
plt.yticks([])
plt.scatter(z[:, 0], z[:, 1], s=60, c=color, cmap='Set2')
plt.show()
# takes as input a dictionary made of key:lists, and the output is a list made of dictionary with all possible combinations
# ex. input = {'A':[0,1] 'B':[2,3]} --> output = [{'A':0, 'B':2}, {'A':1, 'B':2}, {'A':0, 'B':3}, {'A':1, 'B':3}]
def generate_combinations(input_dict):
keys = list(input_dict.keys())
lists = [input_dict[key] for key in keys]
counters = [0] * len(lists)
finish = False
combination_list = []
while not finish:
current_dict = {}
for i in range(len(keys)):
current_dict [keys[i]] = lists[i][counters[i]]
combination_list.append(current_dict)
j = 0
while j < len(lists) and counters[j] == len(lists[j]) - 1:
counters[j] = 0
j += 1
if j == len(lists):
finish = True
else:
counters[j] += 1
return combination_list