-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_no_MLP.py
283 lines (217 loc) · 10.9 KB
/
main_no_MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import datetime
import json
import os
import re
import torch
import torch_geometric.transforms as T
from torch.utils.tensorboard import SummaryWriter
import torch.utils.tensorboard
from torch_geometric.nn import summary
import engine
import get_best_params
import load_dataset
import model
import parameters
import utils
random_seed = 42
# torch.manual_seed(random_seed)
# torch.cuda.manual_seed_all(random_seed)
# select the device on which you should run the computation
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# ************************************** COMMANDS ************************************
use_grid_search = False # True
dataset_name = "cora" # cora - citeseer - pubmed
nets = ["GAT"] # GCN - GAT - SAGE
# ************************************ PARAMETERS ************************************
# GCN
parameters_grid_GCN = parameters.parameters_grid_GCN
parameters_GCN = parameters.parameters_GCN
# GAT
parameters_grid_GAT = parameters.parameters_grid_GAT
parameters_GAT = parameters.parameters_GAT
# SAGE
parameters_grid_SAGE = parameters.parameters_grid_SAGE
parameters_SAGE = parameters.parameters_SAGE
# Others
lr = parameters.lr
weight_decay = parameters.weight_decay
# ************************************ CLASSIFICATION DATASET ************************************
# Normalize the features and put it on the appropriate device
transform_classification = T.Compose([
T.NormalizeFeatures(),
T.ToDevice(device)
])
classification_datasets = {}
# Load the 3 datasets and apply the transform needed
classification_datasets['cora'] = load_dataset.load_ds('Cora', transform_classification)
classification_datasets['citeseer'] = load_dataset.load_ds('CiteSeer', transform_classification)
classification_datasets['pubmed'] = load_dataset.load_ds('PubMed', transform_classification)
# print the information for each dataset
for ds in classification_datasets.values():
load_dataset.print_ds_info(ds)
print('\n#################################\n')
classification_dataset = classification_datasets[dataset_name]
# ************************************ LINK PREDICTION DATASET ************************************
# Change transform for link prediction
transform_prediction = T.Compose([
T.NormalizeFeatures(),
T.ToDevice(device),
T.RandomLinkSplit(num_val=0.1, num_test=0.1, is_undirected=True,
add_negative_train_samples=False)
])
linkpred_datasets = {}
# Load the datasets as before
linkpred_datasets['cora'] = load_dataset.load_ds('Cora', transform_prediction)
linkpred_datasets['citeseer'] = load_dataset.load_ds('CiteSeer', transform_prediction)
linkpred_datasets['pubmed'] = load_dataset.load_ds('PubMed', transform_prediction)
linkpred_dataset = linkpred_datasets[dataset_name]
# Get the 3 splits
train_ds, val_ds, test_ds = linkpred_dataset[0]
# ************************************ TRAINING ************************************
for net in nets:
out_dir = "nomlp_" + dataset_name + "_" + net
os.makedirs(out_dir, exist_ok=True)
results_file = os.path.join(out_dir, dataset_name + "_" + net + "_results.json")
if (os.path.exists(results_file)):
with open(results_file) as f:
results_dict = json.load(f)
else:
results_dict = {}
params_file = os.path.join(out_dir, dataset_name + "_" + net + "_params.json")
if (os.path.exists(params_file)):
with open(params_file) as f:
params_dict = json.load(f)
else:
params_dict = {}
if net == "GCN":
if use_grid_search:
param_combinations = utils.generate_combinations(parameters_grid_GCN)
else:
param_combinations = [parameters_GCN]
elif net == "GAT":
if use_grid_search:
param_combinations = utils.generate_combinations(parameters_grid_GAT)
else:
param_combinations = [parameters_GAT]
else:
if use_grid_search:
param_combinations = utils.generate_combinations(parameters_grid_SAGE)
else:
param_combinations = [parameters_SAGE]
i = 1
for params in param_combinations:
logdir = os.path.join("logs", "{}-{}".format(
datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S"),
",".join(("{}={}".format(re.sub("(.)[^_]*_?", r"\1", k), v) for k, v in sorted(params.items())))
))
writer = SummaryWriter(log_dir=logdir)
print("\n " + net + ", (iteration " + str(i) + " over " + str(
len(param_combinations)) + ") - Testing parameters: ")
i += 1
for key, value in params.items():
print(f"{key}: {value}", end="\n")
print("--------------------------------\n")
if net == "SAGE":
batch_generation = True
num_batch_neighbors = params["num_batch_neighbors"]
batch_size = params["batch_size"]
else:
batch_generation = False
num_batch_neighbors = []
batch_size = None
# ************************************ CLASSIFICATION 1 ************************************
input_size = classification_dataset.num_features
hidden_channels = params["hidden_channels"]
output_size = classification_dataset.num_classes
dropout = params["dropout"]
if net == "GCN":
network = model.GCN(input_size=input_size, embedding_size=output_size, hidden_channels=hidden_channels,
dropout=dropout)
elif net == "GAT":
heads = params["heads"]
heads_out = params["heads_out"]
network = model.GAT(input_size=input_size, embedding_size=output_size, hidden_channels=hidden_channels,
heads=heads, heads_out=heads_out, dropout=dropout)
else:
network = model.Graph_SAGE(input_size=input_size, embedding_size=output_size,
hidden_channels=hidden_channels, dropout=dropout)
# print(summary(network, classification_dataset.data.x, classification_dataset.data.edge_index, max_depth=5))
# ************************************ LINK PREDICTION ************************************
print("\n************************* TRAINING LINK PREDICTION *************************")
network = network.to(device)
criterion = torch.nn.BCEWithLogitsLoss(reduction='sum')
# run the training
epochs_linkpred = params["epochs_linkpred"]
optimizer = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay)
lr_schedule = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs_linkpred, eta_min=lr / 1e3)
epochs = epochs_linkpred
writer_info = {'dataset_name': 'no_mlp'+dataset_name, 'training_step': 'link_pred', 'model_name': net,
'second_tr_e': None, 'starting_epoch': 0}
results_linkpred = engine.train_link_prediction(network, train_ds, val_ds, criterion, optimizer, epochs, writer,
writer_info,
device, batch_generation, num_batch_neighbors, batch_size, lr_schedule)
print()
print("*****************************************************************************\n")
# ************************************ CLASSIFICATION 2 ************************************
print("************************** TRAINING CLASSIFICATION **************************")
model_classification2 = network.to(device)
criterion = torch.nn.CrossEntropyLoss(reduction='sum', label_smoothing=0.1)
# run the training
epochs_classification2 = params["epochs_classification2"]
lr_schedule = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs_classification2, eta_min=lr / 1e2)
writer_info = {'dataset_name': 'no_mlp'+dataset_name, 'training_step': 'class2', 'model_name': net,
'second_tr_e': epochs, 'starting_epoch': epochs_linkpred}
optimizer = torch.optim.Adam(model_classification2.parameters(), lr=lr,
weight_decay=weight_decay)
results_class2b = engine.train_classification(model_classification2, classification_dataset.data,
classification_dataset.data, criterion,
optimizer, epochs_classification2, writer, writer_info, device,
batch_generation,
num_batch_neighbors, batch_size, lr_schedule)
print()
print("*****************************************************************************")
# ************************************ SAVING RESULTS ************************************
# Set key to use in dictionaries
key = net + "||"
for k, v in params.items():
key = key + k[0:3] + "_" + str(v) + "/"
# Save parameters used in the training
params_list = []
for k, r in params.items():
params_list.append((k, r))
params_dict[key] = params_list
with open(params_file, "w") as f:
json.dump(params_dict, f, indent=4)
"""
# Save results of the training
results_class1_list = []
for k, r in results_class1.items():
results_class1_list.append((k, r))
"""
test_loss, test_acc = engine.eval_classifier(model_classification2, criterion, classification_dataset.data,False,batch_generation,device,num_batch_neighbors,batch_size)
results_class2b["test_loss"] = [test_loss]
results_class2b["test_acc"] = [test_acc]
if key in results_dict.keys():
for k, r in results_class2b.items():
results_dict[key][k].append(r[-1])
else:
results_dict[key] = {}
for k, r in results_class2b.items():
results_dict[key][k] = [r[-1]]
with open(results_file, "w") as f:
json.dump(results_dict, f, indent=4)
print("\nLink prediction val accuracy: ", results_linkpred["val_acc"][-1])
print("Classification 2b val accuracy: ", results_class2b["val_acc"][-1])
# print("\nTest accuracy: ", test_acc)
print()
print("*****************************************************************************")
if use_grid_search:
num_best_runs = 5
filename = dataset_name + "_" + net + "_best_runs.txt"
filepath = os.path.join(out_dir, filename)
sorted_accuracies = get_best_params.find_best_params(dataset_name, net, results_dict, params_dict,
num_best_runs, print_output=False, save_output=True,
file_name=filepath)
filename = dataset_name + "_" + net + "_params_counter.txt"
filepath = os.path.join(out_dir, filename)
get_best_params.count_params_in_best_runs(sorted_accuracies, num_best_runs, filepath)