-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_dataset.py
22 lines (20 loc) · 979 Bytes
/
load_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from torch_geometric.datasets import Planetoid
def load_ds(dataset_name, transform):
dataset = Planetoid(root='data/Planetoid', name=dataset_name, transform=transform)
return dataset
def print_ds_info(ds : Planetoid):
print(f'Dataset {ds}')
print('======================')
print(f'Number of graphs: {len(ds)}')
print(f'Number of features: {ds.num_features}')
print(f'Number of classes: {ds.num_classes}')
print('======================')
data = ds[0]
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')