-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMBPO_disc.py
593 lines (524 loc) · 27.7 KB
/
MBPO_disc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
os.environ['LIBSUMO_AS_TRACI'] = '1' # 终端运行加速
import sys
import time
import gymnasium as gym
from collections import namedtuple
import itertools
from itertools import count
import sumo_rl
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
import numpy as np
import pandas as pd
import collections
import random
import matplotlib.pyplot as plt
import argparse
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser(description='MBPO 任务')
parser.add_argument('--model_name', default="MBPO", type=str, help='基本算法名称')
parser.add_argument('-t', '--task', default="highway", type=str, help='任务名称')
parser.add_argument('-n', '--net', default="env/big-intersection/big-intersection.net.xml", type=str, help='SUMO路网文件路径')
parser.add_argument('-f', '--flow', default="env/big-intersection/big-intersection.rou.xml", type=str, help='SUMO车流文件路径')
parser.add_argument('-w', '--writer', default=0, type=int, help='存档等级, 0: 不存,1: 本地 2: 本地 + wandb本地, 3. 本地 + wandb云存档')
parser.add_argument('-o', '--online', action="store_true", help='是否上传wandb云')
parser.add_argument('--sta', action="store_true", help='是否利用sta辅助')
parser.add_argument('--sta_kind', default=False, help='sta 预训练模型类型,"expert"或"regular"')
parser.add_argument('-e', '--episodes', default=500, type=int, help='运行回合数')
parser.add_argument('-r', '--reward', default='diff-waiting-time', type=str, help='奖励函数')
parser.add_argument('--begin_time', default=1000, type=int, help='回合开始时间')
parser.add_argument('--duration', default=2000, type=int, help='单回合运行时间')
parser.add_argument('--begin_seed', default=1, type=int, help='起始种子')
parser.add_argument('--end_seed', default=7, type=int, help='结束种子')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class PolicyNet(torch.nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(PolicyNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.h_1 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.h_1(F.relu(self.fc1(x))))
return F.softmax(self.fc2(x), dim=1) # 直接输出softmax
class QValueNet(torch.nn.Module):
''' 只有一层隐藏层的Q网络 '''
def __init__(self, state_dim, hidden_dim, action_dim):
super(QValueNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.h_1 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.h_1(F.relu(self.fc1(x))))
return self.fc2(x)
class SAC:
''' 处理离散动作的SAC算法 '''
def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
alpha_lr, target_entropy, tau, gamma, device):
# 策略网络
self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
# 第一个Q网络
self.critic_1 = QValueNet(state_dim, hidden_dim, action_dim).to(device)
# 第二个Q网络
self.critic_2 = QValueNet(state_dim, hidden_dim, action_dim).to(device)
self.target_critic_1 = QValueNet(state_dim, hidden_dim,
action_dim).to(device) # 第一个目标Q网络
self.target_critic_2 = QValueNet(state_dim, hidden_dim,
action_dim).to(device) # 第二个目标Q网络
# 令目标Q网络的初始参数和Q网络一样
self.target_critic_1.load_state_dict(self.critic_1.state_dict())
self.target_critic_2.load_state_dict(self.critic_2.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic_1_optimizer = torch.optim.Adam(self.critic_1.parameters(), lr=critic_lr)
self.critic_2_optimizer = torch.optim.Adam(self.critic_2.parameters(), lr=critic_lr)
# 使用alpha的log值,可以使训练结果比较稳定
self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float)
self.log_alpha.requires_grad = True # 可以对alpha求梯度
self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=alpha_lr)
self.target_entropy = target_entropy # 目标熵的大小
self.gamma = gamma
self.tau = tau
self.device = device
def take_action(self, state):
state = torch.tensor(state[np.newaxis, :], dtype=torch.float).to(self.device)
probs = self.actor(state)
action_dist = torch.distributions.Categorical(probs)
action = action_dist.sample()
return action.item()
# 计算目标Q值,直接用策略网络的输出概率进行期望计算
def calc_target(self, rewards, next_states, dones):
next_probs = self.actor(next_states)
next_log_probs = torch.log(next_probs + 1e-8)
entropy = -torch.sum(next_probs * next_log_probs, dim=1, keepdim=True)
q1_value = self.target_critic_1(next_states)
q2_value = self.target_critic_2(next_states)
min_qvalue = torch.sum(next_probs * torch.min(q1_value, q2_value), dim=1, keepdim=True)
next_value = min_qvalue + self.log_alpha.exp() * entropy
td_target = rewards + self.gamma * next_value * (1 - dones)
return td_target
def soft_update(self, net, target_net):
for param_target, param in zip(target_net.parameters(), net.parameters()):
param_target.data.copy_(param_target.data * (1.0 - self.tau) + param.data * self.tau)
def update(self, transition_dict):
states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
actions = torch.tensor(transition_dict['actions'], dtype=torch.int64).view(-1, 1).to(self.device) # 动作不再是float类型
rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
dones = torch.tensor(transition_dict['dones'], dtype=torch.int).view(-1, 1).to(self.device)
truncated = torch.tensor(transition_dict['truncated'], dtype=torch.int).view(-1, 1).to(self.device)
# 更新两个Q网络
td_target = self.calc_target(rewards, next_states, dones | truncated)
critic_1_q_values = self.critic_1(states).gather(1, actions)
critic_1_loss = torch.mean(F.mse_loss(critic_1_q_values, td_target.detach()))
critic_2_q_values = self.critic_2(states).gather(1, actions)
critic_2_loss = torch.mean(F.mse_loss(critic_2_q_values, td_target.detach()))
self.critic_1_optimizer.zero_grad()
critic_1_loss.backward()
self.critic_1_optimizer.step()
self.critic_2_optimizer.zero_grad()
critic_2_loss.backward()
self.critic_2_optimizer.step()
# 更新策略网络
probs = self.actor(states)
log_probs = torch.log(probs + 1e-8)
# 直接根据概率计算熵
entropy = -torch.sum(probs * log_probs, dim=1, keepdim=True)
q1_value = self.critic_1(states)
q2_value = self.critic_2(states)
min_qvalue = torch.sum(probs * torch.min(q1_value, q2_value), dim=1, keepdim=True) # 直接根据概率计算期望
actor_loss = torch.mean(-self.log_alpha.exp() * entropy - min_qvalue)
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# 更新alpha值
alpha_loss = torch.mean((entropy - self.target_entropy).detach() * self.log_alpha.exp())
self.log_alpha_optimizer.zero_grad()
alpha_loss.backward()
self.log_alpha_optimizer.step()
self.soft_update(self.critic_1, self.target_critic_1)
self.soft_update(self.critic_2, self.target_critic_2)
class Swish(nn.Module):
''' Swish激活函数 '''
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return x * torch.sigmoid(x)
def init_weights(m):
''' 初始化模型权重 '''
def truncated_normal_init(t, mean=0.0, std=0.01):
torch.nn.init.normal_(t, mean=mean, std=std)
while True:
cond = (t < mean - 2 * std) | (t > mean + 2 * std)
if not torch.sum(cond):
break
t = torch.where(
cond,
torch.nn.init.normal_(torch.ones(t.shape, device=device),
mean=mean,
std=std), t)
return t
if type(m) == nn.Linear or isinstance(m, FCLayer):
truncated_normal_init(m.weight, std=1 / (2 * np.sqrt(m._input_dim)))
m.bias.data.fill_(0.0)
class FCLayer(nn.Module):
''' 集成之后的全连接层 '''
def __init__(self, input_dim, output_dim, ensemble_size, activation):
super(FCLayer, self).__init__()
self._input_dim, self._output_dim = input_dim, output_dim
self.weight = nn.Parameter(
torch.Tensor(ensemble_size, input_dim, output_dim).to(device))
self._activation = activation
self.bias = nn.Parameter(
torch.Tensor(ensemble_size, output_dim).to(device))
def forward(self, x):
return self._activation(torch.add(torch.bmm(x, self.weight), self.bias[:, None, :]))
class EnsembleModel(nn.Module):
''' 环境模型集成 '''
def __init__(self,
state_dim,
action_dim,
model_alpha,
ensemble_size=5,
learning_rate=1e-3):
super(EnsembleModel, self).__init__()
# 输出包括均值和方差, 因此是'状态与奖励维度'之和的两倍
self._output_dim = (state_dim + 1) * 2
self._model_alpha = model_alpha # 模型损失函数中优化可训练方差区间的权重
self._max_logvar = nn.Parameter((torch.ones((1, self._output_dim // 2)).float() / 2).to(device), requires_grad=False)
self._min_logvar = nn.Parameter((-torch.ones((1, self._output_dim // 2)).float() * 10).to(device), requires_grad=False)
self.layer1 = FCLayer(state_dim + action_dim, 200, ensemble_size, Swish())
self.layer2 = FCLayer(200, 200, ensemble_size, Swish())
self.layer3 = FCLayer(200, 200, ensemble_size, Swish())
self.layer4 = FCLayer(200, 200, ensemble_size, Swish())
self.layer5 = FCLayer(200, self._output_dim, ensemble_size, nn.Identity()) # nn.Identity() 是恒等映射激活, 就是直接输出
self.apply(init_weights) # 初始化环境模型中的参数
self.optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
def forward(self, x, return_log_var=False):
ret = self.layer5(self.layer4(self.layer3(self.layer2(self.layer1(x)))))
mean = ret[:, :, :self._output_dim // 2] # 前面一半作为均值, 后面一半作为方差
# 在PETS算法中, 将方差控制在最小值和最大值之间
logvar = self._max_logvar - F.softplus(self._max_logvar - ret[:, :, self._output_dim // 2:])
logvar = self._min_logvar + F.softplus(logvar - self._min_logvar)
return mean, logvar if return_log_var else torch.exp(logvar)
def loss(self, mean, logvar, labels, use_var_loss=True):
inverse_var = torch.exp(-logvar)
if use_var_loss:
mse_loss = torch.mean(
torch.mean(torch.pow(mean - labels, 2) * inverse_var,
dim=-1),
dim=-1)
var_loss = torch.mean(torch.mean(logvar, dim=-1), dim=-1)
total_loss = torch.sum(mse_loss) + torch.sum(var_loss) # 带着方差损失一起优化
else:
mse_loss = torch.mean(torch.pow(mean - labels, 2), dim=(1, 2))
total_loss = torch.sum(mse_loss)
return total_loss, mse_loss
def train(self, loss):
self.optimizer.zero_grad()
# loss 同时优化方差, 缩小方差区间
loss += self._model_alpha * torch.sum(self._max_logvar) - self._model_alpha * torch.sum(self._min_logvar)
loss.backward()
self.optimizer.step()
class EnsembleDynamicsModel:
''' 环境模型集成,加入精细化的训练 '''
def __init__(self, state_dim, action_dim, model_alpha=0.01, num_network=5):
'''
- state_dim : 状态维度
- action_dim : 动作维度
- model_alpha : float, 可选, 优化可训练方差区间的权重, 这是为了缩小方差, 默认 0.01
- num_network : int, 可选, 与环境集成数一致, 默认 5
'''
self._num_network = num_network
self._state_dim, self._action_dim = state_dim, action_dim
self.model = EnsembleModel(state_dim,
action_dim,
model_alpha,
ensemble_size=num_network)
self._epoch_since_last_update = 0
def train(self,
inputs,
labels,
batch_size=64,
holdout_ratio=0.1, # 验证比例
max_iter=20):
# 设置训练集与验证集
permutation = np.random.permutation(inputs.shape[0]) # 给出随机打乱的序号
inputs, labels = inputs[permutation], labels[permutation]
num_holdout = int(inputs.shape[0] * holdout_ratio)
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:] # 训练集
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout] # 验证集
holdout_inputs = torch.from_numpy(holdout_inputs).float().to(device)
holdout_labels = torch.from_numpy(holdout_labels).float().to(device)
holdout_inputs = holdout_inputs[None, :, :].repeat([self._num_network, 1, 1])
holdout_labels = holdout_labels[None, :, :].repeat([self._num_network, 1, 1])
# 保留最好的结果
# 若干个环境模型的推演快照
self._snapshots = {i: (None, 1e10) for i in range(self._num_network)}
for epoch in itertools.count(): # 无终止序列, 用于需要循环的次数无法确定时, 可以用break跳出
# 定义每一个网络的训练数据
train_index = np.vstack([
np.random.permutation(train_inputs.shape[0])
for _ in range(self._num_network)
])
# 所有真实数据都用来训练
for batch_start_pos in range(0, train_inputs.shape[0], batch_size):
batch_index = train_index[:, batch_start_pos:batch_start_pos + batch_size]
train_input = torch.from_numpy(train_inputs[batch_index]).float().to(device)
train_label = torch.from_numpy(train_labels[batch_index]).float().to(device)
mean, logvar = self.model(train_input, return_log_var=True)
loss, _ = self.model.loss(mean, logvar, train_label) # 这里返回的loss是同时带均值方差的
self.model.train(loss)
# 验证模型
with torch.no_grad():
mean, logvar = self.model(holdout_inputs, return_log_var=True)
_, holdout_losses = self.model.loss(mean,
logvar,
holdout_labels,
use_var_loss=False)
holdout_losses = holdout_losses.cpu()
break_condition = self._save_best(epoch, holdout_losses)
# 如果五个动力模型都优化超过10%, 或到迭代限制时则结束训练
if break_condition or epoch > max_iter:
break
def _save_best(self, epoch, losses, threshold=0.1):
updated = False
for i in range(len(losses)):
current = losses[i]
_, best = self._snapshots[i] # best 一开始是个很大的值
improvement = (best - current) / best
if improvement > threshold: # 对于i模型来说, 提升是否大于10% (0.1)
self._snapshots[i] = (epoch, current)
updated = True
self._epoch_since_last_update = 0 if updated else self._epoch_since_last_update + 1
return self._epoch_since_last_update > 5 # 如果五个动力模型都更新了最佳状态返回True
def predict(self, inputs, batch_size=64):
inputs = np.tile(inputs, (self._num_network, 1, 1))
inputs = torch.tensor(inputs, dtype=torch.float).to(device)
mean, var = self.model(inputs, return_log_var=False)
return mean.detach().cpu().numpy(), var.detach().cpu().numpy()
class FakeEnv:
def __init__(self, model: EnsembleDynamicsModel):
self.model = model
def step(self, obs, act):
inputs = np.concatenate((obs, np.array(act)[np.newaxis]), axis=-1)
ensemble_model_means, ensemble_model_vars = self.model.predict(inputs)
ensemble_model_means[:, :, 1:] += obs # * 这一步还原了next_obs的预测, 因为之前 label = next_obs - obs
ensemble_model_stds = np.sqrt(ensemble_model_vars)
# 重参数化
ensemble_samples = ensemble_model_means + np.random.normal(
size=ensemble_model_means.shape) * ensemble_model_stds
num_models, batch_size, _ = ensemble_model_means.shape
models_to_use = np.random.choice([i for i in range(self.model._num_network)], size=batch_size) # 五个模型里面抽一个
batch_inds = np.arange(0, batch_size) # 抽批量大小1, 也只存了一步, 因为传进来的obs和act就是一步, 理论上可以多步
samples = ensemble_samples[models_to_use, batch_inds]
rewards, next_obs = samples[:, :1][0][0], samples[:, 1:][0]
return rewards, next_obs
class MBPO:
def __init__(self, env, agent, fake_env, env_pool, model_pool,
rollout_length, rollout_batch_size, real_ratio, num_episode):
self.env = env
self.agent = agent
self.fake_env = fake_env
self.env_pool = env_pool # 真环境模型经验池
self.model_pool = model_pool # 假环境模型经验池
self.rollout_length = rollout_length
self.rollout_batch_size = rollout_batch_size
self.real_ratio = real_ratio
self.num_episode = num_episode
def rollout_model(self):
observations, _, _, _, _, _ = self.env_pool.sample(self.rollout_batch_size)
for obs in observations:
for i in range(self.rollout_length):
action = self.agent.take_action(obs)
reward, next_obs = self.fake_env.step(obs, action)
self.model_pool.add(obs, action, reward, next_obs, False, False)
obs = next_obs
def update_agent(self, policy_train_batch_size=64):
env_batch_size = int(policy_train_batch_size * self.real_ratio) # real_ratio = 0.5
model_batch_size = policy_train_batch_size - env_batch_size
for _ in range(10):
env_obs, env_action, env_reward, env_next_obs, env_done, env_truncated = self.env_pool.sample(env_batch_size)
if self.model_pool.size() > 0:
model_obs, model_action, model_reward, model_next_obs, model_done, model_truncated = self.model_pool.sample(model_batch_size)
obs = np.concatenate((env_obs, model_obs), axis=0)
action = np.concatenate((env_action, model_action), axis=0)
next_obs = np.concatenate((env_next_obs, model_next_obs), axis=0)
reward = np.concatenate((env_reward, model_reward), axis=0)
done = np.concatenate((env_done, model_done), axis=0)
truncated = np.concatenate((env_truncated, model_truncated), axis=0)
else:
obs, action, next_obs, reward, done, truncated = env_obs, env_action, env_next_obs, env_reward, env_done, env_truncated
transition_dict = {
'states': obs,
'actions': action,
'next_states': next_obs,
'rewards': reward,
'dones': done,
'truncated': truncated,
}
self.agent.update(transition_dict)
def train_model(self):
'''输入 obs 和 action ,label是cat(reward, next_obs - obs)'''
obs, action, reward, next_obs, done, truncated = self.env_pool.return_all_samples()
inputs = np.concatenate((obs, np.array(action)[:, np.newaxis]), axis=-1)
reward = np.array(reward)
# reward:[200] -> [200, 1], (next_obs - obs):[200, 3], labels -> [200, 4]
labels = np.concatenate((np.reshape(reward, (reward.shape[0], -1)), next_obs - obs),axis=-1,)
self.fake_env.model.train(inputs, labels)
def explore(self):
obs, done, truncated, episode_return = self.env.reset()[0], False, False, 0
obs = obs.reshape(-1)
while not done | truncated:
action = self.agent.take_action(obs)
next_obs, reward, done, truncated, info = self.env.step(action)
next_obs = next_obs.reshape(-1)
self.env_pool.add(obs, action, reward, next_obs, done, truncated)
obs = next_obs
episode_return += reward
return episode_return
def train(self, seed, writer, ckpt_path):
def save_data():
system_type = sys.platform
ckpt = f'ckpt/{ckpt_path}'
csv_path = f'data/plot_data/{ckpt_path}'
os.makedirs(ckpt) if not os.path.exists(ckpt) else None
os.makedirs(csv_path) if not os.path.exists(csv_path) else None
alg_name = ckpt_path.split('/')[1]
torch.save(
{
"episode": i_episode,
"agent": self.agent,
"return_list": return_list,
"time_list": time_list,
"seed_list": seed_list,
"pool_list": pool_list,
"replay_buffer": self.model_pool,
},
f'{ckpt}/{seed}_{system_type}.pt',
)
return_save = pd.DataFrame({
'Algorithm': [alg_name] * len(return_list),
'Seed': [seed] * len(return_list),
"Return": return_list,
"Pool size": pool_list,
})
return_save.to_csv(f'{csv_path}/{seed}_{system_type}.csv', index=False, encoding='utf-8-sig')
return_list = []
time_list = [time.time()]
seed_list = [seed]
pool_list = [0]
explore_return = self.explore() # 模型未经训练时相当于随机探索,采集数据至动力模型经验池
print('\n\033[32m[ Explore episode ]\033[0m: 1, return: %d' % explore_return)
return_list.append(explore_return)
with tqdm(total=self.num_episode - 1, mininterval=40, ncols=100) as pbar:
for i_episode in range(self.num_episode - 1):
obs, done, truncated, episode_return = self.env.reset(seed=seed)[0], False, False, 0
obs = obs.reshape(-1)
step = 0
while not done | truncated:
if step % 50 == 0: # 每50步训练一次动力环境、推演并收集经验
self.train_model() # 训练动力环境
self.rollout_model() # 在动力环境的经验池采样状态并推演,将经验增加到策略经验池
action = self.agent.take_action(obs)
next_obs, reward, done, truncated, info = self.env.step(action)
next_obs = next_obs.reshape(-1)
self.env_pool.add(obs, action, reward, next_obs, done, truncated)
obs = next_obs
episode_return += reward
self.update_agent()
step += 1
return_list.append(episode_return)
time_list.append(time.time())
seed_list.append(seed)
pool_list.append(self.env_pool.size())
if writer > 0:
save_data()
pbar.set_postfix({
'return': round(np.mean(return_list[-20:]), 2),
'Pool size': pool_list[-1],
})
pbar.update(1)
# print('\n\033[32m[ Episode ]\033[0m %d, return: %d' % (i_episode + 2, episode_return))
env.close()
return return_list
class ReplayBuffer:
def __init__(self, capacity):
self.buffer = collections.deque(maxlen=capacity)
def add(self, state, action, reward, next_state, done, truncated):
self.buffer.append((state, action, reward, next_state, done, truncated))
def size(self):
return len(self.buffer)
def sample(self, batch_size):
if batch_size > len(self.buffer):
return self.return_all_samples()
else:
transitions = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done, truncated = zip(*transitions)
return np.array(state), action, reward, np.array(next_state), done, truncated
def return_all_samples(self):
all_transitions = list(self.buffer)
state, action, reward, next_state, done, truncated = zip(*all_transitions)
return np.array(state), action, reward, np.array(next_state), done, truncated
if __name__ == '__main__':
def seed_torch(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if torch.backends.cudnn.enabled:
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# 环境相关
if args.task == 'sumo':
env = gym.make('sumo-rl-v0',
net_file=args.net,
route_file=args.flow,
use_gui=False,
begin_time=args.begin_time,
num_seconds=args.duration,
reward_fn=args.reward,
sumo_seed=args.begin_seed,
sumo_warnings=False,
additional_sumo_cmd='--no-step-log')
elif args.task == 'highway':
env = gym.make('highway-fast-v0')
env.configure({
"lanes_count": 4,
"vehicles_density": 2,
"duration": 100,
})
elif args.task == 'cliff':
gym.make('CliffWalking-v0')
real_ratio = 0.5
actor_lr = 5e-4
critic_lr = 5e-3
alpha_lr = 1e-3
hidden_dim = 128
gamma = 0.98
tau = 0.005 # 软更新参数
buffer_size = 20000
target_entropy = 0.98 * (-np.log(1 / env.action_space.n))
model_alpha = 0.01 # 模型损失函数中的加权权重
state_dim = env.observation_space.shape[0] if args.task == 'sumo' else torch.multiply(*env.observation_space.shape)
num_actions = env.action_space.n
action_dim = 1
rollout_batch_size = 1000
rollout_length = 1 # 推演长度k, 推荐更多尝试
model_pool_size = rollout_batch_size * rollout_length
for seed in range(args.begin_seed, args.end_seed + 1):
seed_torch(seed)
agent = SAC(state_dim, hidden_dim, num_actions, actor_lr,
critic_lr, alpha_lr, target_entropy, tau, gamma, device)
model = EnsembleDynamicsModel(state_dim, action_dim, model_alpha)
fake_env = FakeEnv(model)
env_pool = ReplayBuffer(buffer_size)
model_pool = ReplayBuffer(model_pool_size)
mbpo = MBPO(env, agent, fake_env, env_pool, model_pool, rollout_length,
rollout_batch_size, real_ratio, args.episodes)
ckpt_path = f'{args.task}/{args.model_name}'
return_list = mbpo.train(seed, args.writer, ckpt_path)