-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcholesky.py
54 lines (44 loc) · 1.49 KB
/
cholesky.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 24 12:12:31 2020
@author: adria
"""
from math import *
import numpy as np
def cholesky2(A): ### esta es la mia
n=len(A)
L=np.zeros((n,n))
for i in range(n):
for j in range(i+1):
suma=0
for k in range(j):
suma+=L[i][k]*L[j][k]
if i == j:
L[i][i]=sqrt(A[i][i]-suma)
else:
L[i][j]=(A[i][j]-suma)/L[j][j]
return L
def cholesky(A):
"""Performs a Cholesky decomposition of A, which must
be a symmetric and positive definite matrix. The function
returns the lower variant triangular matrix, L."""
n = len(A)
# Create zero matrix for L
L = [[0.0] * n for i in range(n)]
# Perform the Cholesky decomposition
for i in range(n):
for k in range(i+1):
tmp_sum = sum(L[i][j] * L[k][j] for j in range(k))
if (i == k): # Diagonal elements
# LaTeX: l_{kk} = \sqrt{ a_{kk} - \sum^{k-1}_{j=1} l^2_{kj}}
L[i][k] = sqrt(A[i][i] - tmp_sum)
else:
# LaTeX: l_{ik} = \frac{1}{l_{kk}} \left( a_{ik} - \sum^{k-1}_{j=1} l_{ij} l_{kj} \right)
L[i][k] = (1.0 / L[k][k] * (A[i][k] - tmp_sum))
return L
A = [[6, 3, 4, 8], [3, 6, 5, 1], [4, 5, 10, 7], [8, 1, 7, 25]]
L = cholesky2(A)
L2=np.asarray(cholesky(A))
print(A)
L=cholesky(A)
print(np.matmul(L,np.transpose(L)))