forked from rafalab/BigBookofR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path020-book_list.Rmd
348 lines (194 loc) · 6.96 KB
/
020-book_list.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Career & Community
## Build Your Career in Data Science
Not R-specific but a great read!
https://www.manning.com/books/build-a-career-in-data-science
## Twitter for R Programmers
[Oscar Baruffa](https://twitter.com/OscarBaruffa), [Veerle van Son](https://twitter.com/veerlevanson)
A guide to help R programmers join the very active and friendly community on Twitter.
https://www.t4rstats.com
## Twitter for Scientists
https://t4scientists.com/
# Blogdown
## blogdown: Creating Websites with R Markdown
https://bookdown.org/yihui/blogdown/
# Bookdown
## bookdown: Authoring Books and Technical Documents with R Markdown
https://bookdown.org/yihui/bookdown/
## A Minimal Book Example
https://benmarwick.github.io/bookdown-ort/
# Data Science
## R for Data Science
Whickham and Grolemund
A really good place to start
https://r4ds.had.co.nz/
## R for Data Science Solutions
Solutions for the hadley and Grolemund R4Ds book
https://jrnold.github.io/r4ds-exercise-solutions/
## Introduction to Data Science
Rafael A Irizarry
Pay what you want, minimum $0.00
https://leanpub.com/datasciencebook
## R Programming for Data Science
Roger Peng
https://bookdown.org/rdpeng/rprogdatascience/
## Exploratory Data Analysis… by Roger D. Peng
Pay what you want, minimum $0.00
https://leanpub.com/exdata
## edav.info/
https://edav.info/
## APS 135: Introduction to Exploratory Data Analysis with R
https://dzchilds.github.io/eda-for-bio/
# Data Visualization
## ggplot2: Elegant Graphics for Data Analysis
https://ggplot2-book.org/
## ggplot2 in 2
Lucy D'Agostino McGowan
Pay what you want, minimum $4.99
Really good overview of Ggplot2. Oscar Baruffa made a sped-up [screencast](https://youtu.be/_G7_J8M9588) while working through it.
https://leanpub.com/ggplot2in2
## Data Visualization - A practical introduction
https://socviz.co/
## Data Processing & Visualization
https://m-clark.github.io/data-processing-and-visualization/
## Data Visualization in R
Brooke Anderson
https://geanders.github.io/navy_public_health/index.html#prerequisites
## Data Visualization with R
Rob Kabakoff
https://rkabacoff.github.io/datavis/
## R Graphics Cookbook, 2nd edition
https://r-graphics.org/
## plotly Interactive web-based data visualization with R, plotly, and shiny
https://plotly-r.com/
## BBC Visual and Data Journalism cookbook for R graphics
https://bbc.github.io/rcookbook/
## Fundamentals of Data Visualization
https://clauswilke.com/dataviz/
# Distributed computing
## Mastering Spark with R
https://therinspark.com/
# Getting, cleaning and wrangling data
## A Beginner's Guide to Clean Data - beginners-guide-to-clean-data
https://b-greve.gitbook.io/beginners-guide-to-clean-data/
## 21 Recipes for Mining Twitter Data with rtweet
https://rud.is/books/21-recipes/
## Text Mining with R
https://www.tidytextmining.com/
## Spreadsheet Munging Strategies
Great for dealing with messy spreadsheets
https://nacnudus.github.io/spreadsheet-munging-strategies/
# Geospatial
## Geocomputation with R
https://geocompr.robinlovelace.net/
## Spatial Data Science
https://keen-swartz-3146c4.netlify.app/
## Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny
https://www.paulamoraga.com/book-geospatial/
## Introduction to R - R Spatial
https://rspatial.org/intr/index.html
# Machine Learning
## Hands-On Machine Learning with R
https://bradleyboehmke.github.io/HOML/
## Feature Engineering and Selection: A Practical Approach for Predictive Models
http://www.feat.engineering/index.html
# Network analysis
## Network Analysis in R Cookbook
http://sachaepskamp.com/files/Cookbook.html
# R Markdown
## Getting used to R, RStudio, and R Markdown
https://bookdown.org/chesterismay/rbasics/
## Introduction to R Markdown
https://m-clark.github.io/Introduction-to-Rmarkdown/
## RMarkdown for Scientists
https://rmd4sci.njtierney.com/
## Pimp my RMD: a few tips for R Markdown
https://holtzy.github.io/Pimp-my-rmd/
# R programming
## Modern R with the tidyverse
https://b-rodrigues.github.io/modern_R/
## What They Forgot to Teach You About R
https://rstats.wtf/
## Field Guide to the R Ecosystem
https://fg2re.sellorm.com/
## YaRrr! The Pirate’s Guide to R
https://bookdown.org/ndphillips/YaRrr/
## Advanced R.
http://adv-r.had.co.nz/
## R packages
http://r-pkgs.had.co.nz/
## Efficient R programming
https://csgillespie.github.io/efficientR/
## The Tidyverse Cookbook
https://rstudio-education.github.io/tidyverse-cookbook/
## Hands-On Programming with R
https://rstudio-education.github.io/hopr/
## The R Language
[R Core team](https://stat.ethz.ch/R-manual/R-patched/doc/AUTHORS)
https://stat.ethz.ch/R-manual/R-patched/doc/html/
## R language for programmers
[John D Cook](https://www.johndcook.com/blog/services-2/)
https://www.johndcook.com/blog/r_language_for_programmers/
## R Cookbook - 2nd edition
JD Long, Paul Teetor
Not to be confused with Cookbook for R
https://rc2e.com/index.html
## Cookbook for R
Winston Chang
Not to be confused with R Cookbook
http://www.cookbook-r.com/
## Tidy evaluation
https://tidyeval.tidyverse.org/
## Python to R: The Tidynomicon
http://tidynomicon.tech/
## A sufficient Introduction to R
Derek l. Sonderegger
https://dereksonderegger.github.io/570L/
# Shiny
## A gRadual intRoduction to Shiny
https://laderast.github.io/gradual_shiny/
## Mastering Shiny
https://mastering-shiny.org/
## Shiny Production with AWS Book
https://business-science.github.io/shiny-production-with-aws-book/
# Statistics
## Common statistical tests are linear models: a work through
https://steverxd.github.io/Stat_tests/
## Learning statistics with R: A tutorial for psychology students and other beginners. (Version 0.6.1)
https://learningstatisticswithr-bookdown.netlify.app/
## Answering questions with data
Matthew J. Crump
Looks like a comprehensive stats resource!
https://crumplab.github.io/statistics/
## Forecasting: Principles and Practice
https://otexts.com/fpp2/
## stats545
https://stat545.com/
## An Introduction to Statistical and Data Sciences via R
https://moderndive.com/
# Version control
## Happy Git and GitHub for the useR
https://happygitwithr.com/
# Workflow
## How I Use R
https://howiuser.com/
## Agile Data Science with R
https://edwinth.github.io/ADSwR/
# Field specific
## Analyzing Financial and Economic Data with R
https://www.msperlin.com/afedR/
## Data Science in Education Using R
https://datascienceineducation.com/
## The Plain Person’s Guide to Plain Text Social Science
https://plain-text.co/index.html#introduction
## Technical Foundations of Informatics
https://info201.github.io/
## Practical R for Mass Communication and Journalism
http://www.machlis.com/R4Journalists/index.html
## Computational Genomics with R
http://compgenomr.github.io/book/
## Introduction to Econometrics with R
https://www.econometrics-with-r.org/
# Other compendiums
## Data Science with R: A Resource Compendium
Another big book of resources!
https://bookdown.org/martin_monkman/DataScienceResources_book/