-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
100 lines (77 loc) · 3.12 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import CTransformers
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
# load the pdf files from the path
loader = DirectoryLoader("data/", glob="*.pdf", loader_cls=PyPDFLoader)
documents = loader.load()
# split text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
text_chunks = text_splitter.split_documents(documents)
# create embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}
)
# vectorstore
vector_store = FAISS.from_documents(text_chunks, embeddings)
# create llm
llm = CTransformers(
model="llama-2-7b-chat.ggmlv3.q4_0.bin",
model_type="llama",
config={"max_new_tokens": 128, "temperature": 0.01},
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
memory=memory,
)
st.title("Neuro Health-Care Chat Bot")
def conversation_chat(query):
result = chain({"question": query, "chat_history": st.session_state["history"]})
st.session_state["history"].append((query, result["answer"]))
return result["answer"]
def initialize_session_state():
if "history" not in st.session_state:
st.session_state["history"] = []
if "generated" not in st.session_state:
st.session_state["generated"] = ["Hello! Ask me anything about Neuro"]
if "past" not in st.session_state:
st.session_state["past"] = ["Hello!"]
def display_chat_history():
reply_container = st.container()
container = st.container()
with container:
with st.form(key="my_form", clear_on_submit=True):
user_input = st.text_input(
"Question:", placeholder="Ask anything about Neuro", key="input"
)
submit_button = st.form_submit_button(label="Send")
if submit_button and user_input:
output = conversation_chat(user_input)
st.session_state["past"].append(user_input)
st.session_state["generated"].append(output)
if st.session_state["generated"]:
with reply_container:
for i in range(len(st.session_state["generated"])):
message(
st.session_state["past"][i],
is_user=True,
key=str(i) + "_user",
avatar_style="person",
)
message(
st.session_state["generated"][i],
key=str(i),
logo="https://img.icons8.com/?size=96&id=19625&format=png",
)
# Initialize session state
initialize_session_state()
# Display chat history
display_chat_history()