-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_1231.py
304 lines (258 loc) · 12.8 KB
/
detect_1231.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# -*-coding:utf-8-*-
import argparse
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
from xml.etree.ElementTree import Element, SubElement, ElementTree
import numpy as np
import platform as pf
import psutil
import PIL
import pandas as pd
import seaborn as sns
def indent(elem, level=0): #
i = "\n" + level * " "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
indent(elem, level + 1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
def ToF(file, cat):
if cat == '00000000':
output = "N"
elif str(file).split('_')[2] == cat:
output = "T"
else:
output = "F"
return output
def detect(save_img=False):
imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, half, view_img, save_txt, save_xml = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt, opt.save_xml
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Initialize model
model = Darknet(opt.cfg, imgsz)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'], strict=False)
else: # darknet format
load_darknet_weights(model, weights)
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'],
strict=False) # load weights
modelc.to(device).eval()
# Eval mode
model.to(device).eval()
# Fuse Conv2d + BatchNorm2d layers
# model.fuse()
# Export mode
if ONNX_EXPORT:
model.fuse()
img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192)
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
torch.onnx.export(model, img, f, verbose=False, opset_version=11,
input_names=['images'], output_names=['classes', 'boxes'])
# Validate exported model
import onnx
model = onnx.load(f) # Load the ONNX model
onnx.checker.check_model(model) # Check that the IR is well formed
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
return
# Half precision
half = half and device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
rslt = []
nT = 0
nF = 0
nN = 0
nND = 0
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=opt.augment)[0]
t2 = torch_utils.time_synchronized()
# to float
if half:
pred = pred.float()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections for image i
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
#s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
root = Element('annotation')
SubElement(root, 'folder').text = str(Path(out))
SubElement(root, 'filename').text = str(Path(p))
SubElement(root, 'path').text = save_path
if det is not None and len(det):
# Rescale boxes from imgsz to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
count = 0
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %s, ' % (n, names[int(c)]) # add to string
s += '%s, ' % (ToF(str(Path(p)), names[int(c)])) # add True or False
total = []
object_names = []
# Write results
for *xyxy, conf, cls in reversed(det):
label = '%s %.2f' % (names[int(cls)], conf)
if save_txt: # Write to file(xml ?�일)
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
#if save_xml:
semi = []
for nums in range(4): ## total??좌표 ?�??
str_x = str(xyxy[nums]).split('(')
str_x = str_x[1].split('.')
semi.append(str_x[0])
total.append(semi)
object_names.append(names[int(cls)])
count = count + 1
tnT = 0
tnF = 0
tnN = 0
for i in range(count):
rslt.append('{0},{1},{2}'.format(Path(p),object_names[i],ToF(Path(p),object_names[i])))
if ToF(Path(p),object_names[i]) == "T":
tnT += 1
elif ToF(Path(p),object_names[i]) == "F":
tnF += 1
elif ToF(Path(p),object_names[i]) == "N":
tnN += 1
if save_img or view_img: # Add bbox to image
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
for i in range(count): #리스트 두 개 xml파일에 저장
object_xml = SubElement(root, 'object')
SubElement(object_xml, 'name').text = object_names[i]
bndbox = SubElement(object_xml, 'bndbox')
SubElement(bndbox, 'xmin').text = str(total[i][0])
SubElement(bndbox, 'ymin').text = str(total[i][1])
SubElement(bndbox, 'xmax').text = str(total[i][2])
SubElement(bndbox, 'ymax').text = str(total[i][3])
nT += 1 if tnT > 1 else tnT
nND += 1 if tnF == 0 and tnT == 0 else 0
nF += 1 if tnF > 1 else tnF
if save_xml:
indent(root)
tree = ElementTree(root)
tree.write(save_path[:save_path.rfind('.')] + '.xml', encoding='utf-8',
xml_declaration=True) ##아웃풋 폴더에 jpg와 xml 생성
# Print time (inference + NMS)
print('%s (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
tot = nT + nF + nND
accu = nT / tot
print('Number of Detected Objects: {0}, True: {1}, False: {2}, Not Detected: {3}, Accuracy: {4}'.format(tot, nT, nF, nND, accu))
with open('./classificaion_result.txt','w') as f:
rslt = [r + '\n' for r in rslt]
f.writelines(rslt)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='data/coco.names', help='*.names path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path')
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=320, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--save-xml', action='store_true', help='save results to *.xml')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
opt.names = check_file(opt.names) # check file
print(len(os.listdir(opt.source)))
with torch.no_grad():
print('Session START :', time.strftime('%Y-%m-%d %Z %H:%M:%S', time.localtime(time.time())))
print('command : python3 detect_1231.py --cfg {0} --names {1} --weights {2}'.format(opt.cfg, opt.names, opt.weights))
print('===============================================================')
#print(d.isoformat())
def printOsInfo():
print('GPU :\t', torch.cuda.get_device_name(0))
print('OS :\t', pf.system())
# print('OS Version :\t', platform.version())
if __name__ == '__main__':
printOsInfo()
def printSystemInfor():
print('Process information :\t', pf.processor())
print('Process Architecture :\t', pf.machine())
print('RAM Size :\t',str(round(psutil.virtual_memory().total / (1024.0 **3)))+"(GB)")
print('===============================================================')
if __name__ == '__main__':
printSystemInfor()
print('Pytorch')
print('torch ' + torch.__version__)
print('numpy ' + np.__version__)
print('torchvision ' + torch.__version__)
print('matplotlib ' + matplotlib.__version__)
print('pillow ' + PIL.__version__)
print('pandas ' + pd.__version__)
print('seaborn ' + sns.__version__)
print('psutil ' + psutil.__version__)
print('===============================================================')
detect()