-
Notifications
You must be signed in to change notification settings - Fork 759
/
Copy pathml_model.py
645 lines (500 loc) · 26.9 KB
/
ml_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import pandas as pd
import numpy as np
import traceback
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.svm import SVR
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_score, cross_val_predict
from sklearn.linear_model import Ridge
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.model_selection import TimeSeriesSplit, GridSearchCV,RandomizedSearchCV
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
import time
import os
import errno
from multiprocessing import cpu_count
n_cpus = cpu_count() - 1
def prepare_rolling_train(df,features_column,label_column,date_column,unique_datetime,testing_windows,first_trade_date_index, max_rolling_window_index,current_index):
if current_index <=max_rolling_window_index:
train=df[(df[date_column] >= unique_datetime[0]) \
& (df[date_column] < unique_datetime[current_index-testing_windows])]
else:
train=df[(df[date_column] >= unique_datetime[current_index-max_rolling_window_index]) \
& (df[date_column] < unique_datetime[current_index-testing_windows])]
X_train=train[features_column]
y_train=train[label_column]
return X_train,y_train
def prepare_rolling_test(df,features_column,label_column,date_column,unique_datetime,testing_windows,fist_trade_date_index, current_index):
test=df[(df[date_column] >= unique_datetime[current_index-testing_windows]) \
& (df[date_column] < unique_datetime[current_index])]
X_test=test[features_column]
y_test=test[label_column]
return X_test,y_test
def prepare_trade_data(df,features_column,label_column,date_column,tic_column,unique_datetime,testing_windows,fist_trade_date_index, current_index):
trade = df[df[date_column] == unique_datetime[current_index]]
X_trade = trade[features_column]
y_trade = trade[label_column]
trade_tic = trade[tic_column].values
return X_trade,y_trade,trade_tic
def train_linear_regression(X_train,y_train):
lr_regressor = LinearRegression()
model = lr_regressor.fit(X_train, y_train)
return model
def train_recursive_feature_elimination(X_train,y_train):
lr_regressor = LinearRegression(random_state = 42)
model = RFE(lr_regressor)
return model
def train_lasso(X_train, y_train):
# lasso_regressor = Lasso()
# model = lasso_regressor.fit(X_train, y_train)
lasso = Lasso(random_state = 42)
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]}
# my_cv_lasso = TimeSeriesSplit(n_splits=3).split(X_train_advanced)
lasso_regressor = GridSearchCV(lasso, parameters, scoring=scoring_method, cv=3)
lasso_regressor.fit(X_train, y_train)
model = lasso_regressor.best_estimator_
return model
def train_ridge(X_train, y_train):
# lasso_regressor = Lasso()
# model = lasso_regressor.fit(X_train, y_train)
ridge = Ridge(random_state = 42)
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]}
# my_cv_lasso = TimeSeriesSplit(n_splits=3).split(X_train_advanced)
ridge_regressor = GridSearchCV(ridge, parameters, scoring=scoring_method, cv=3)
ridge_regressor.fit(X_train, y_train)
model = ridge_regressor.best_estimator_
return model
def train_random_forest(X_train, y_train):
random_grid = {
#'max_depth': [10, 20, 40, 80, 100, None],
'max_features': ['sqrt'],
'min_samples_leaf': [0.05,0.1,0.2],
'min_samples_split': np.linspace(0.1, 1, 10, endpoint=True),
'n_estimators': [75,100,200]}
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
n_models = 1
for key, val in random_grid.items():
n_models *= len(val)
n_jobs_per_model = min(max(1, n_cpus//n_models), n_cpus)
# my_cv_rf = TimeSeriesSplit(n_splits=5).split(X_train_rf)
rf = RandomForestRegressor(random_state=42, n_jobs= n_jobs_per_model)
#RandomizedSearchCV
#randomforest_regressor = RandomizedSearchCV(estimator=rf,
# param_distributions=random_grid,
# n_iter = 100,
# cv=3,
# n_jobs=-1,
# scoring=scoring_method,
# verbose=0)
#GridSearchCV
randomforest_regressor = GridSearchCV(estimator=rf,
param_grid=random_grid,
cv=3,
n_jobs=n_cpus // n_jobs_per_model,
scoring=scoring_method,
verbose=0)
randomforest_regressor.fit(X_train, y_train)
#print(randomforest_regressor.best_params_ )
model = randomforest_regressor.best_estimator_
'''
randomforest_regressor = RandomForestRegressor(random_state = 42,n_estimators = 400, max_features='auto')
#randomforest_regressor = RandomForestRegressor(random_state = 42,n_estimators = 300)
model = randomforest_regressor.fit(X_train, y_train)
'''
return model
def train_svm(X_train, y_train):
svr = SVR(kernel = 'rbf')
param_grid_svm = {'C':[0.001, 0.1, 1],'gamma': [1e-7,0.1]}
#param_grid_svm = {'kernel': ('linear', 'rbf','poly'), 'C':[0.001, 0.01, 0.1, 1, 10],'gamma': [1e-7, 1e-4,0.001,0.1],'epsilon':[0.1,0.2,0.5,0.3]}
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
svm_regressor = GridSearchCV(estimator=svr, param_grid =param_grid_svm, cv=3, n_jobs=-1, scoring=scoring_method, verbose=0)
svm_regressor.fit(X_train, y_train)
model = svm_regressor.best_estimator_
#estimator = svm_regressor.best_estimator_
#selector = RFE(estimator, 5, step=1)
#model = selector.fit(X, y)
return model
def train_lightgbm(X_train, y_train):
# model = gbm.fit(X_train, y_train)
param_grid_gbm = {'learning_rate': [0.1, 0.01, 0.001], 'n_estimators': [100, 250, 500,1000]}
n_models = 1
for key, val in param_grid_gbm.items():
n_models *= len(val)
n_jobs_per_model = min(max(1, n_cpus//n_models), n_cpus)
lightgbm = LGBMRegressor(random_state = 42, n_jobs=n_jobs_per_model)
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
gbm_regressor = GridSearchCV(estimator=lightgbm, param_grid=param_grid_gbm,
cv=3, n_jobs=n_cpus // n_jobs_per_model, scoring=scoring_method, verbose=0)
gbm_regressor.fit(X_train, y_train)
model = gbm_regressor.best_estimator_
'''
gbm_regressor = GradientBoostingRegressor()
model = gbm_regressor.fit(X_train, y_train)
'''
return model
def train_xgb(X_train, y_train):
xgb = XGBRegressor(random_state = 42, n_jobs=10)
param_grid_gbm = {'learning_rate': [0.1, 0.01, 0.001], 'n_estimators': [100, 250, 500,1000]}
n_models = 1
for key, val in param_grid_gbm.items():
n_models *= len(val)
n_jobs_per_model = min(max(1, n_cpus//n_models), n_cpus)
xgb = XGBRegressor(random_state = 42, n_jobs=n_jobs_per_model)
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
xgb_regressor = GridSearchCV(estimator=xgb, param_grid=param_grid_gbm,
cv=3, n_jobs=n_cpus // n_jobs_per_model, scoring=scoring_method, verbose=0)
xgb_regressor.fit(X_train, y_train)
model = xgb_regressor.best_estimator_
'''
gbm_regressor = GradientBoostingRegressor()
model = gbm_regressor.fit(X_train, y_train)
'''
return model
def train_ada(X_train, y_train):
ada = AdaBoostRegressor()
# model = ada.fit(X_train, y_train)
param_grid_ada = {'n_estimators': [20, 100],
'learning_rate': [0.01, 0.05, 1]}
# scoring_method = 'r2'
# scoring_method = 'explained_variance'
# scoring_method = 'neg_mean_absolute_error'
# scoring_method = 'neg_mean_squared_error'
#scoring_method = 'neg_mean_squared_log_error'
ada_regressor = GridSearchCV(estimator=ada, param_distributions=param_grid_ada,
cv=3, n_jobs=-1, scoring=scoring_method, verbose=0)
ada_regressor.fit(X_train, y_train)
model = ada_regressor.best_estimator_
'''
ada_regressor = AdaBoostRegressor()
model = ada_regressor.fit(X_train, y_train)
'''
return model
def evaluate_model(model, X_test, y_test):
from sklearn.metrics import mean_squared_error
#from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import explained_variance_score
from sklearn.metrics import r2_score
y_predict = model.predict(X_test)
mae = mean_absolute_error(y_test, y_predict)
mse = mean_squared_error(y_test, y_predict)
#msle = mean_squared_log_error(y_test, y_predict)
explained_variance = explained_variance_score(y_test, y_predict)
r2 = r2_score(y_test, y_predict)
return mse
def append_return_table(df_predict, unique_datetime, y_trade_return, trade_tic, current_index):
tmp_table = pd.DataFrame(columns=trade_tic)
tmp_table = tmp_table.append(pd.Series(y_trade_return, index=trade_tic), ignore_index=True)
df_predict.loc[unique_datetime[current_index]][tmp_table.columns] = tmp_table.loc[0]
def run_4model(df,features_column, label_column,date_column,tic_column,
unique_ticker, unique_datetime, trade_date,
first_trade_date_index=20,
testing_windows=4,
max_rolling_window_index=44):
## initialize all the result tables
## need date as index and unique tic name as columns
df_predict_rf = pd.DataFrame(columns=unique_ticker, index=trade_date)
df_predict_gbm = pd.DataFrame(columns=unique_ticker, index=trade_date)
df_predict_xgb = pd.DataFrame(columns=unique_ticker, index=trade_date)
df_predict_best = pd.DataFrame(columns=unique_ticker, index=trade_date)
df_best_model_name = pd.DataFrame(columns=['model_name'], index=trade_date)
evaluation_record = {}
# first trade date is 1995-06-01
# fist_trade_date_index = 20
# testing_windows = 6
import re
df = df.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
for i in range(first_trade_date_index, len(unique_datetime)):
try:
# prepare training data
X_train, y_train = prepare_rolling_train(df,
features_column,
label_column,
date_column,
unique_datetime,
testing_windows,
first_trade_date_index,
max_rolling_window_index,
current_index=i
)
# prepare testing data
X_test, y_test = prepare_rolling_test(df,
features_column,
label_column,
date_column,
unique_datetime,
testing_windows,
first_trade_date_index,
current_index=i)
# prepare trade data
X_trade, y_trade, trade_tic = prepare_trade_data(df,
features_column,
label_column,
date_column,
tic_column,
unique_datetime,
testing_windows,
first_trade_date_index,
current_index=i)
# Training
# lr_model = train_linear_regression(X_train, y_train)
t = time.perf_counter()
xgb_model = train_xgb(X_train, y_train)
print(f"xgb:{time.perf_counter() - t}s")
t = time.perf_counter()
gbm_model = train_lightgbm(X_train, y_train)
print(f"gbm:{time.perf_counter() - t}s")
t =time.perf_counter()
rf_model = train_random_forest(X_train, y_train)
print(f"rf:{time.perf_counter() - t}s")
# ridge_model = train_ridge(X_train, y_train)
# Validation
rf_eval = evaluate_model(rf_model, X_test, y_test)
xgb_eval = evaluate_model(xgb_model, X_test, y_test)
gbm_eval = evaluate_model(gbm_model, X_test ,y_test)
# Trading
y_trade_rf = rf_model.predict(X_trade)
y_trade_xgb = xgb_model.predict(X_trade)
y_trade_gbm = gbm_model.predict(X_trade)
# Decide the best model
eval_data = [
[rf_eval, y_trade_rf] ,
[xgb_eval, y_trade_xgb],
[gbm_eval, y_trade_gbm]
]
eval_table = pd.DataFrame(eval_data, columns=['model_eval', 'model_predict_return'],
index=['rf', 'xgb', 'gbm'])
evaluation_record[unique_datetime[i]]=eval_table
# lowest error score model
y_trade_best = eval_table.model_predict_return.values[eval_table.model_eval == eval_table.model_eval.min()][0]
best_model_name = eval_table.index.values[eval_table.model_eval == eval_table.model_eval.min()][0]
# Highest Explained Variance
# y_trade_best = eval_table.model_predict_return.values[eval_table.model_eval==eval_table.model_eval.max()][0]
# best_model_name = eval_table.index.values[eval_table.model_eval==eval_table.model_eval.max()][0]
df_best_model_name.loc[unique_datetime[i]] = best_model_name
# Prepare Predicted Return table
append_return_table(df_predict_rf, unique_datetime, y_trade_rf, trade_tic, current_index=i)
append_return_table(df_predict_xgb, unique_datetime, y_trade_xgb, trade_tic, current_index=i)
append_return_table(df_predict_gbm, unique_datetime, y_trade_gbm, trade_tic, current_index=i)
append_return_table(df_predict_best, unique_datetime, y_trade_best, trade_tic, current_index=i)
print('Trade Date: ', unique_datetime[i])
except Exception:
traceback.print_exc()
df_evaluation = get_model_evaluation_table(evaluation_record,trade_date)
return (
df_predict_rf,
df_predict_gbm,
df_predict_xgb,
df_predict_best,
df_best_model_name,
evaluation_record,
df_evaluation)
def get_model_evaluation_table(evaluation_record,trade_date):
evaluation_list = []
for d in trade_date:
try:
evaluation_list.append(evaluation_record[d]['model_eval'].values)
except:
print('error')
df_evaluation = pd.DataFrame(evaluation_list,columns = ['rf', 'xgb', 'gbm'])
df_evaluation.index = trade_date
return df_evaluation
def save_model_result(sector_result,sector_name):
df_predict_rf = sector_result[0].astype(np.float64)
df_predict_gbm = sector_result[1].astype(np.float64)
df_predict_xgb = sector_result[2].astype(np.float64)
df_predict_best = sector_result[3].astype(np.float64)
df_best_model_name = sector_result[4]
df_evaluation_score = sector_result[5]
df_model_score = sector_result[6]
filename = 'results/'+sector_name+'/'
if not os.path.exists(os.path.dirname(filename)):
try:
os.makedirs(os.path.dirname(filename))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
df_predict_rf.to_csv('results/'+sector_name+'/df_predict_rf.csv')
df_predict_gbm.to_csv('results/'+sector_name+'/df_predict_gbm.csv')
df_predict_xgb.to_csv('results/'+sector_name+'/df_predict_xgb.csv')
df_predict_best.to_csv('results/'+sector_name+'/df_predict_best.csv')
df_best_model_name.to_csv('results/'+sector_name+'/df_best_model_name.csv')
#df_evaluation_score.to_csv('results/'+sector_name+'/df_evaluation_score.csv')
df_model_score.to_csv('results/'+sector_name+'/df_model_score.csv')
def calculate_sector_daily_return(daily_price, unique_ticker,trade_date):
daily_price_pivot = pd.pivot_table(daily_price, values='adj_price', index=['datadate'],
columns=['tic'], aggfunc=np.mean)
daily_price_pivot=daily_price_pivot[unique_ticker]
daily_return=daily_price_pivot.pct_change()
daily_return = daily_return[daily_return.index>=trade_date[0]]
return daily_return
def calculate_sector_quarterly_return(daily_price, unique_ticker,trade_date_plus1):
daily_price_pivot = pd.pivot_table(daily_price, values='adj_price', index=['datadate'],
columns=['tic'], aggfunc=np.mean)
daily_price_pivot=daily_price_pivot[unique_ticker]
quarterly_price_pivot=daily_price_pivot.ix[trade_date_plus1]
quarterly_return=quarterly_price_pivot.pct_change()
quarterly_return = quarterly_return[quarterly_return.index>trade_date_plus1[0]]
return quarterly_return
def pick_stocks_based_on_quantiles_old(df_predict_best):
quantile_0_25 = {}
quantile_25_50 = {}
quantile_50_75 = {}
quantile_75_100 = {}
for i in range(df_predict_best.shape[0]):
q_25=df_predict_best.iloc[i].quantile(0.25)
q_50=df_predict_best.iloc[i].quantile(0.5)
q_75=df_predict_best.iloc[i].quantile(0.75)
q_100=df_predict_best.iloc[i].quantile(1)
quantile_0_25[df_predict_best.index[i]] = df_predict_best.iloc[i][df_predict_best.iloc[i] <= q_25]
quantile_25_50[df_predict_best.index[i]] = df_predict_best.iloc[i][(df_predict_best.iloc[i] > q_25) & \
(df_predict_best.iloc[i] <= q_50)]
quantile_50_75[df_predict_best.index[i]] = df_predict_best.iloc[i][(df_predict_best.iloc[i] > q_50) & \
(df_predict_best.iloc[i] <= q_75)]
quantile_75_100[df_predict_best.index[i]] = df_predict_best.iloc[i][(df_predict_best.iloc[i] > q_75)]
return (quantile_0_25, quantile_25_50, quantile_50_75, quantile_75_100)
def pick_stocks_based_on_quantiles(df_predict_best):
quantile_0_30 = {}
quantile_70_100 = {}
for i in range(df_predict_best.shape[0]):
q_30=df_predict_best.iloc[i].quantile(0.3)
q_70=df_predict_best.iloc[i].quantile(0.7)
quantile_0_30[df_predict_best.index[i]] = df_predict_best.iloc[i][df_predict_best.iloc[i] <= q_30]
quantile_70_100[df_predict_best.index[i]] = df_predict_best.iloc[i][(df_predict_best.iloc[i] >= q_70)]
return (quantile_0_30, quantile_70_100)
def calculate_portfolio_return(daily_return,trade_date_plus1,long_dict,frequency_date):
df_portfolio_return = pd.DataFrame(columns=['portfolio_return'])
for i in range(len(trade_date_plus1) - 1):
# for long only
#equally weight
#long_normalize_weight = 1/long_dict[trade_date_plus1[i]].shape[0]
# map date and tic
long_tic_return_daily = \
daily_return[(daily_return.index >= trade_date_plus1[i]) &\
(daily_return.index < trade_date_plus1[i + 1])][long_dict[trade_date_plus1[i]].index]
# return * weight
long_daily_return = long_tic_return_daily
df_temp = long_daily_return.mean(axis=1)
df_temp = pd.DataFrame(df_temp, columns=['daily_return'])
df_portfolio_return = df_portfolio_return.append(df_temp)
return df_portfolio_return
def calculate_portfolio_quarterly_return(quarterly_return,trade_date_plus1,long_dict):
df_portfolio_return = pd.DataFrame(columns=['portfolio_return'])
for i in range(len(trade_date_plus1) - 1):
# for long only
#equally weight
#long_normalize_weight = 1/long_dict[trade_date_plus1[i]].shape[0]
# map date and tic
long_tic_return = quarterly_return[quarterly_return.index == trade_date_plus1[i + 1]][long_dict[trade_date_plus1[i]].index]
df_temp = long_tic_return.mean(axis=1)
df_temp = pd.DataFrame(df_temp, columns=['portfolio_return'])
df_portfolio_return = df_portfolio_return.append(df_temp)
return df_portfolio_return
def long_only_strategy_daily(df_predict_return, daily_return, trade_month_plus1, top_quantile_threshold=0.75):
long_dict = {}
for i in range(df_predict_return.shape[0]):
top_q = df_predict_return.iloc[i].quantile(top_quantile_threshold)
# low_q=df_predict_return.iloc[i].quantile(0.2)
# Select all stocks
# long_dict[df_predict_return.index[i]] = df_predict_return.iloc[i][~np.isnan(df_predict_return.iloc[i])]
# Select Top 30% Stocks
long_dict[df_predict_return.index[i]] = df_predict_return.iloc[i][df_predict_return.iloc[i] >= top_q]
# short_dict[df_predict_return.index[i]] = df_predict_return.iloc[i][df_predict_return.iloc[i]<=low_q]
df_portfolio_return_daily = pd.DataFrame(columns=['daily_return'])
for i in range(len(trade_month_plus1) - 1):
# for long only
#equally weight
long_normalize_weight = 1/long_dict[trade_month_plus1[i]].shape[0]
# calculate weight based on predicted return
#long_normalize_weight = \
#long_dict[trade_month_plus1[i]] / sum(long_dict[trade_month_plus1[i]].values)
# map date and tic
long_tic_return_daily = \
daily_return[(daily_return.index >= trade_month_plus1[i]) & (daily_return.index < trade_month_plus1[i + 1])][
long_dict[trade_month_plus1[i]].index]
# return * weight
long_daily_return = long_tic_return_daily * long_normalize_weight
df_temp = long_daily_return.sum(axis=1)
df_temp = pd.DataFrame(df_temp, columns=['daily_return'])
df_portfolio_return_daily = df_portfolio_return_daily.append(df_temp)
# for short only
# short_normalize_weight=short_dict[trade_month[i]]/sum(short_dict[trade_month[i]].values)
# short_tic_return=tic_monthly_return[tic_monthly_return.index==trade_month[i]][short_dict[trade_month[i]].index]
# short_return_table=short_tic_return
# portfolio_return_dic[trade_month[i]] = long_return_table.values.sum() + short_return_table.values.sum()
return df_portfolio_return_daily
def long_only_strategy_monthly(df_predict_return, tic_monthly_return, trade_month, top_quantile_threshold=0.7):
long_dict = {}
short_dict = {}
for i in range(df_predict_return.shape[0]):
top_q = df_predict_return.iloc[i].quantile(top_quantile_threshold)
# low_q=df_predict_return.iloc[i].quantile(0.2)
# Select all stocks
# long_dict[df_predict_return.index[i]] = df_predict_return.iloc[i][~np.isnan(df_predict_return.iloc[i])]
# Select Top 30% Stocks
long_dict[df_predict_return.index[i]] = df_predict_return.iloc[i][df_predict_return.iloc[i] >= top_q]
# short_dict[df_predict_return.index[i]] = df_predict_return.iloc[i][df_predict_return.iloc[i]<=low_q]
portfolio_return_dic = {}
for i in range(len(trade_month)):
# for longX_train_rf only
# calculate weight based on predicted return
long_normalize_weight = long_dict[trade_month[i]] / sum(long_dict[trade_month[i]].values)
# map date and tic
long_tic_return = tic_monthly_return[tic_monthly_return.index == trade_month[i]][
long_dict[trade_month[i]].index]
# return * weight
long_return_table = long_tic_return * long_normalize_weight
portfolio_return_dic[trade_month[i]] = long_return_table.values.sum()
# for short only
# short_normalize_weight=short_dict[trade_month[i]]/sum(short_dict[trade_month[i]].values)
# short_tic_return=tic_monthly_return[tic_monthly_return.index==trade_month[i]][short_dict[trade_month[i]].index]
# short_return_table=short_tic_return
# portfolio_return_dic[trade_month[i]] = long_return_table.values.sum() + short_return_table.values.sum()
df_portfolio_return = pd.DataFrame.from_dict(portfolio_return_dic, orient='index')
df_portfolio_return = df_portfolio_return.reset_index()
df_portfolio_return.columns = ['trade_month', 'monthly_return']
df_portfolio_return.index = df_portfolio_return.trade_month
df_portfolio_return = df_portfolio_return['monthly_return']
return df_portfolio_return
def plot_predict_return_distribution(df_predict_best,sector_name,out_path):
import matplotlib.pyplot as plt
for i in range(df_predict_best.shape[0]):
fig=plt.figure(figsize=(8,5))
df_predict_best.iloc[i].hist()
plt.xlabel("predicted return",size=15)
plt.ylabel("frequency",size=15)
plt.title(sector_name+": trade date - "+str(df_predict_best.index[i]),size=15)
plt.savefig(out_path+str(df_predict_best.index[i])+".png")