-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_test.py
272 lines (233 loc) · 13.2 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import torch
import random
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.camera_utils import update_pose
from itertools import cycle
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
opt.iterations = 600
first_iter = 0
tb_writer = prepare_output_and_logger(dataset) # 准备 Tensorboard 的输出和日志记录
gaussians = GaussianModel(dataset.sh_degree) # 创建高斯模型
scene = Scene(dataset, gaussians) # 初始化场景
gaussians.training_setup(opt) # 设置训练参数
if checkpoint: # 如果有检查点,从检查点恢复模型
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
# 设置背景颜色
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# torch.cuda.Event精确记录gpu的运行时间
iter_start = torch.cuda.Event(enable_timing=True) # 记录迭代开始时间
iter_end = torch.cuda.Event(enable_timing=True) # 记录迭代结束时间
viewpoint_stack = None # 视点栈
ema_loss_for_log = 0.0
# 创建了一个从 first_iter 到 opt.iterations 的整数序列的循环,并使用 tqdm 函数将其转换为一个可视化的进度条,用于显示训练过程中的进度。
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
train_cameras = scene.getTrainCameras()
camera_cycle = cycle(train_cameras)
'''其目的是不断尝试建立与某个 GUI 界面的连接,然后接收和发送数据。'''
for iteration in range(first_iter, (opt.iterations + 1)):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
# 从 GUI 界面接收数据,这些数据包括自定义相机参数、训练指示、转换参数等。
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
# 使用接收到的自定义相机参数进行渲染,得到渲染图像。
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"] # core code 1
# 将渲染图像转换为字节流的形式。
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
# 将渲染图像的字节流发送回 GUI 界面。
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record() # 这一行代码是用来记录迭代开始的时间点。
gaussians.update_learning_rate(iteration) # 这是调用了一个方法或函数来更新学习率。
# we increase the levels of SH up to a maximum degree
if iteration % 10 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if iteration % len(train_cameras) == 0:
random.shuffle(train_cameras)
camera_cycle = cycle(train_cameras)
viewpoint_cam = next(camera_cycle)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True # 开启调试模式,以便对算法进行调试和跟踪。
opt_params = [
{"params": [viewpoint_cam.cam_rot_delta], "lr": 0.003, "name": "rot_{}".format(viewpoint_cam.uid)},
{"params": [viewpoint_cam.cam_trans_delta], "lr": 0.001, "name": "trans_{}".format(viewpoint_cam.uid)},
{"params": [viewpoint_cam.exposure_a], "lr": 0.01, "name": "exposure_a_{}".format(viewpoint_cam.uid)},
{"params": [viewpoint_cam.exposure_b], "lr": 0.01, "name": "exposure_b_{}".format(viewpoint_cam.uid)},
]
camera_optimizer = torch.optim.Adam(opt_params)
for it in range(50):
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if it % 100 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(1)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if iteration < opt.densify_until_iter:
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none=True)
camera_optimizer.step()
# Update camera pose
converged = update_pose(viewpoint_cam)
camera_optimizer.zero_grad()
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
if converged:
break
# opt_params = []
# for viewpoint_cam in train_cameras:
# opt_params.append(
# {
# "params": [viewpoint_cam.cam_rot_delta],
# "lr": 0.003,
# "name": "rot_{}".format(viewpoint_cam.uid),
# }
# )
# opt_params.append(
# {
# "params": [viewpoint_cam.cam_trans_delta],
# "lr": 0.001,
# "name": "trans_{}".format(viewpoint_cam.uid),
# }
# )
# opt_params.append(
# {
# "params": [viewpoint_cam.exposure_a],
# "lr": 0.01,
# "name": "exposure_a_{}".format(viewpoint_cam.uid),
# }
# )
# opt_params.append(
# {
# "params": [viewpoint_cam.exposure_b],
# "lr": 0.01,
# "name": "exposure_b_{}".format(viewpoint_cam.uid),
# }
# )
# global_optimizer = torch.optim.Adam(opt_params + list(gaussians.parameters()), lr=opt.lr)
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[140, 600])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[140, 600])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# 调用GUI转gaussian_renderer/network_gui.py,GUI初始化
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")