-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKNeighborsClassifier.py
40 lines (32 loc) · 1.07 KB
/
KNeighborsClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
from sklearn.datasets import load_iris
iris=load_iris()
from sklearn.cross_validation import train_test_split
x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,train_size=0.75,random_state=2300)
n_neighbors=3
def knn(n_neighbors,array):
evaluator=np.zeros(len(x_train))
collector=np.zeros(n_neighbors)
k=0
start=0
for i in range(len(x_train)):
evaluator[i]=np.linalg.norm(array-x_train[i])
for j in range(len(evaluator)):
if ((evaluator[j]==min(evaluator))&(k<n_neighbors)):
collector[k]=y_train[j]
k=k+1
evaluator[j]=100000000
value=0
for j in range(n_neighbors):
counter=0
for i in range(n_neighbors):
if (collector[j]==collector[i]):
counter=counter+1
if(counter>value):
value=counter
classification=collector[j]
return(classification)
output=np.zeros(len(y_test))
for i in range(len(y_test)):
output[i]=knn(n_neighbors,x_test[i])
print("ACCURACY=",np.mean(output==y_test))