This repository has been archived by the owner on Jun 24, 2021. It is now read-only.
forked from hoanhan101/algo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_tree_traverse_test.go
140 lines (116 loc) · 2.72 KB
/
binary_tree_traverse_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
Problem:
- Implement binary tree's depth first search (inorder, preorder, postorder)
and breath-first search (levelorder).
Approach:
- The solution uses a channel to send value over as we traverse the tree.
*/
package lab
import (
"testing"
"github.com/hoanhan101/algo/common"
)
func TestBinaryTreeTraverse(t *testing.T) {
// predefine a test tree that has the following structure.
// 1
// 2 3
// 4 5 6
tree := &BinaryTree{nil, 1, nil}
tree.left = &BinaryTree{nil, 2, nil}
tree.right = &BinaryTree{nil, 3, nil}
tree.left.left = &BinaryTree{nil, 4, nil}
tree.left.right = &BinaryTree{nil, 5, nil}
tree.right.right = &BinaryTree{nil, 6, nil}
// use 4 different channels for 4 different methods to send and receive
// values as we traverse the tree.
c1 := make(chan int)
c2 := make(chan int)
c3 := make(chan int)
c4 := make(chan int)
// close the channels after sending values.
go func() {
inorderTraverse(tree, c1)
close(c1)
}()
go func() {
preorderTraverse(tree, c2)
close(c2)
}()
go func() {
postorderTraverse(tree, c3)
close(c3)
}()
go func() {
levelorderTraverse(tree, c4)
close(c4)
}()
// push the values from channels to slices and define test cases against
// them.
tests := []struct {
c chan int
expected []int
}{
{c1, []int{4, 2, 5, 1, 3, 6}}, // inorder
{c2, []int{1, 2, 4, 5, 3, 6}}, // preorder
{c3, []int{4, 5, 2, 6, 3, 1}}, // postorder
{c4, []int{1, 2, 3, 4, 5, 6}}, // breath-search, aka levelorder
}
for _, tt := range tests {
result := common.ChanToSlice(tt.c)
common.Equal(t, tt.expected, result)
}
}
type BinaryTree struct {
left *BinaryTree
value int
right *BinaryTree
}
// inorder DFS traverse.
func inorderTraverse(t *BinaryTree, ch chan int) {
if t == nil {
return
}
inorderTraverse(t.left, ch)
ch <- t.value
inorderTraverse(t.right, ch)
}
// preorder DFS traverse.
func preorderTraverse(t *BinaryTree, ch chan int) {
if t == nil {
return
}
ch <- t.value
preorderTraverse(t.left, ch)
preorderTraverse(t.right, ch)
}
// postorder DFS traverse.
func postorderTraverse(t *BinaryTree, ch chan int) {
if t == nil {
return
}
postorderTraverse(t.left, ch)
postorderTraverse(t.right, ch)
ch <- t.value
}
// levelorder BFS traverse.
func levelorderTraverse(t *BinaryTree, ch chan int) {
if t == nil {
return
}
// initialize a queue by enqueuing the root.
queue := common.NewQueue()
queue.Push(t)
for queue.Size() > 0 {
// pop the queue and send that value to the channel.
current := queue.Pop().(*BinaryTree)
ch <- current.value
// push its left child.
if current.left != nil {
queue.Push(current.left)
}
// push its right child.
if current.right != nil {
queue.Push(current.right)
}
}
}