-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
78 lines (66 loc) · 2.79 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats
from matplotlib.patches import Ellipse
def plot_2d_contours(f, xlim, ylim,
n_steps=200, n_contour=25,
ax=None, **kwargs):
x = np.linspace(xlim[0], xlim[1], n_steps)
y = np.linspace(ylim[0], ylim[1], n_steps)
grid = np.dstack(np.meshgrid(x, y))
# Flatten out the grid to a simple list of co-ordinate points, this is
# sometimes acceptable when a 3-d array input is not.
coords_vec = grid.reshape(grid.shape[0]*grid.shape[1],-1)
values_vec = f(coords_vec)
# Reshape the output back into a grid:
values_grid = values_vec.reshape(grid.shape[0],grid.shape[1])
if ax is None:
ax = plt.gca()
contourset = ax.contourf(x, y, values_grid, n_contour, **kwargs)
return contourset, ax
def get_2d_confidence_ellipse(mvgauss, confidence=0.95):
"""
Calculate the ellipse containing given proportion of probability mass.
Args:
mvgauss (MvGauss): (2-d) Multivariate Gaussian to use.
confidence (float): Value from 0 to 1. If confidence=0.95, 95% of
samples will fall within this ellipse.
Returns:
matplotlib.patches.Ellipse: The ellipse bounding the confidence region.
"""
# A useful refererence:
# http://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix/
if len(mvgauss.mu)!=2:
raise ValueError("Can only get confidence ellipse for 2-d Gaussian.")
# Might implement ellipsoids / projections at some point in the future
# Invert the CDF at ``confidence`` to get the chisq value.
chisq = scipy.stats.chi2(df=2).ppf(confidence)
# print("PPF Chisq:", chisq)
# chisq = scipy.stats.chi2(df=2).isf(1. - confidence)
# print("ISF Chisq:", chisq)
chi = chisq**0.5
eigval, eigvec = mvgauss.eig
rotated_std_dev = eigval**0.5
rotation_angle = np.rad2deg(np.arctan2(eigvec[0][1],eigvec[0][0]))
ell = Ellipse(mvgauss.mu,
2*chi*rotated_std_dev[0],
2*chi*rotated_std_dev[1],
rotation_angle,
fill=False)
return ell
def plot_principal_axes(mvgauss, ax=None,
**plot_kwargs):
"""
Plot lines along the principal components, connecting the +/- 1-sigma points.
"""
#Calculate the start and end co-ordinates for each principal vector
start = -1*mvgauss.pcv.add(-mvgauss.mu, axis='index')
end = mvgauss.pcv.add(mvgauss.mu, axis='index')
if ax is None:
ax = plt.gca()
# Iterate over the component indices, drawing a line for each
for c_idx in start:
line_data = pd.concat((start[c_idx], end[c_idx]), axis=1)
ax.plot(line_data.iloc[0], line_data.iloc[1], **plot_kwargs)
return ax