forked from soyeonm/FILM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
832 lines (651 loc) · 35.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
import os, sys
import matplotlib
os.environ['KMP_DUPLICATE_LIB_OK']='True'
os.environ["OMP_NUM_THREADS"] = "1"
if sys.platform == 'darwin':
matplotlib.use("tkagg")
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
import math
import time
import cv2
from torchvision import transforms
from PIL import Image
import skimage.morphology
from importlib import import_module
from collections import defaultdict
import json, pickle
from datetime import datetime
from arguments import get_args
from envs import make_vec_envs
import envs.utils.pose as pu
from models.sem_mapping import Semantic_Mapping
from models.instructions_processed_LP.ALFRED_task_helper import determine_consecutive_interx
import alfred_utils.gen.constants as constants
from models.semantic_policy.sem_map_model import UNetMulti
def into_grid(ori_grid, grid_size):
one_cell_size = math.ceil(240/grid_size)
return_grid = torch.zeros(grid_size,grid_size)
for i in range(grid_size):
for j in range(grid_size):
if torch.sum(ori_grid[one_cell_size *i: one_cell_size*(i+1), one_cell_size *j: one_cell_size*(j+1)].bool().float())>0:
return_grid[i,j] = 1
return return_grid
def main():
args = get_args()
dn = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
args.dn =dn
if args.set_dn!="":
args.dn = args.set_dn
dn = args.set_dn
print("dn is ", dn)
if not os.path.exists("results/logs"):
os.makedirs("results/logs")
if not os.path.exists("results/leaderboard"):
os.makedirs("results/leaderboard")
if not os.path.exists("results/successes"):
os.makedirs("results/successes")
if not os.path.exists("results/fails"):
os.makedirs("results/fails")
if not os.path.exists("results/analyze_recs"):
os.makedirs("results/analyze_recs")
completed_episodes = []
skip_indices ={}
if args.exclude_list!="":
if args.exclude_list[-2:] == ".p":
skip_indices = pickle.load(open(args.exclude_list, 'rb'))
skip_indices = {int(s):1 for s in skip_indices}
else:
skip_indices = [a for a in args.exclude_list.split(',')]
skip_indices = {int(s):1 for s in skip_indices}
args.skip_indices = skip_indices
actseqs = []
all_completed = [False] * args.num_processes
successes = []; failures = []
analyze_recs = []
traj_number =[0] * args.num_processes
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
large_objects2idx = {obj:i for i, obj in enumerate(constants.map_save_large_objects)}
all_objects2idx = {o:i for i, o in enumerate(constants.map_all_objects)}
softmax = nn.Softmax(dim=1)
# Logging and loss variables
num_scenes = args.num_processes
num_episodes = [0] * args.num_processes
for e in range(args.from_idx, args.to_idx):
remainder = e % args.num_processes
num_episodes[remainder] +=1
device = args.device = torch.device("cuda:" + args.which_gpu if args.cuda else "cpu")
if args.use_sem_policy:
Unet_model = UNetMulti((240,240), num_sem_categories=24).to(device=device)
sd = torch.load('models/semantic_policy/best_model_multi.pt', map_location = device)
Unet_model.load_state_dict(sd)
del sd
finished = np.zeros((args.num_processes))
wait_env = np.zeros((args.num_processes))
# Starting environments
torch.set_num_threads(1)
envs = make_vec_envs(args)
fails = [0] * num_scenes
prev_cns = [None] * num_scenes
obs, infos, actions_dicts = envs.load_initial_scene()
second_objects = []; list_of_actions_s = []; task_types = []; whether_sliced_s= []
for e in range(args.num_processes):
second_object = actions_dicts[e]['second_object']
list_of_actions = actions_dicts[e]['list_of_actions']
task_type = actions_dicts[e]['task_type']
sliced = actions_dicts[e]['sliced']
second_objects.append(second_object); list_of_actions_s.append(list_of_actions); task_types.append(task_type); whether_sliced_s.append(sliced)
task_finish = [False] * args.num_processes
first_steps = [True] * args.num_processes
num_steps_so_far = [0] * args.num_processes
load_goal_pointers = [0] * args.num_processes
list_of_actions_pointer_s = [0] * args.num_processes
goal_spotted_s = [False] * args.num_processes
list_of_actions_pointer_s = [0] * args.num_processes
goal_logs = [[] for i in range(args.num_processes)]
goal_cat_before_second_objects = [None] * args.num_processes
do_not_update_cat_s = [None] * args.num_processes
wheres_delete_s = [np.zeros((240,240))] * args.num_processes
args.num_sem_categories = 1 + 1 + 1 + 5 * args.num_processes
if args.use_sem_policy:
args.num_sem_categories = args.num_sem_categories + 23
obs = torch.tensor(obs).to(device)
torch.set_grad_enabled(False)
# Initialize map variables
### Full map consists of multiple channels containing the following:
### 1. Obstacle Map
### 2. Exploread Area
### 3. Current Agent Location
### 4. Past Agent Locations
### 5,6,7,.. : Semantic Categories
nc = args.num_sem_categories + 4 # num channels
# Calculating full and local map sizes
map_size = args.map_size_cm // args.map_resolution
full_w, full_h = map_size, map_size
local_w, local_h = int(full_w / args.global_downscaling), \
int(full_h / args.global_downscaling)
# Initializing full and local map
full_map = torch.zeros(num_scenes, nc, full_w, full_h).float().to(device)
local_map = torch.zeros(num_scenes, nc, local_w, local_h).float().to(device)
# Initial full and local pose
full_pose = torch.zeros(num_scenes, 3).float().to(device)
local_pose = torch.zeros(num_scenes, 3).float().to(device)
# Origin of local map
origins = np.zeros((num_scenes, 3))
# Local Map Boundaries
lmb = np.zeros((num_scenes, 4)).astype(int)
### Planner pose inputs has 7 dimensions
### 1-3 store continuous global agent location
### 4-7 store local map boundaries
planner_pose_inputs = np.zeros((num_scenes, 7))
def get_local_map_boundaries(agent_loc, local_sizes, full_sizes):
loc_r, loc_c = agent_loc
local_w, local_h = local_sizes
full_w, full_h = full_sizes
if args.global_downscaling > 1:
gx1, gy1 = loc_r - local_w // 2, loc_c - local_h // 2
gx2, gy2 = gx1 + local_w, gy1 + local_h
if gx1 < 0:
gx1, gx2 = 0, local_w
if gx2 > full_w:
gx1, gx2 = full_w - local_w, full_w
if gy1 < 0:
gy1, gy2 = 0, local_h
if gy2 > full_h:
gy1, gy2 = full_h - local_h, full_h
else:
gx1, gx2, gy1, gy2 = 0, full_w, 0, full_h
return [gx1, gx2, gy1, gy2]
def init_map_and_pose():
full_map.fill_(0.)
full_pose.fill_(0.)
full_pose[:, :2] = args.map_size_cm / 100.0 / 2.0
locs = full_pose.cpu().numpy()
planner_pose_inputs[:, :3] = locs
for e in range(num_scenes):
r, c = locs[e, 1], locs[e, 0]
loc_r, loc_c = [int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution)]
full_map[e, 2:4, loc_r - 1:loc_r + 2, loc_c - 1:loc_c + 2] = 1.0
lmb[e] = get_local_map_boundaries((loc_r, loc_c),
(local_w, local_h),
(full_w, full_h))
planner_pose_inputs[e, 3:] = lmb[e]
origins[e] = [lmb[e][2] * args.map_resolution / 100.0,
lmb[e][0] * args.map_resolution / 100.0, 0.]
for e in range(num_scenes):
local_map[e] = full_map[e, :, lmb[e, 0]:lmb[e, 1], lmb[e, 2]:lmb[e, 3]]
local_pose[e] = full_pose[e] - \
torch.from_numpy(origins[e]).to(device).float()
def init_map_and_pose_for_env(e):
full_map[e].fill_(0.)
full_pose[e].fill_(0.)
full_pose[e, :2] = args.map_size_cm / 100.0 / 2.0
locs = full_pose[e].cpu().numpy()
planner_pose_inputs[e, :3] = locs
r, c = locs[1], locs[0]
loc_r, loc_c = [int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution)]
full_map[e, 2:4, loc_r - 1:loc_r + 2, loc_c - 1:loc_c + 2] = 1.0
lmb[e] = get_local_map_boundaries((loc_r, loc_c),
(local_w, local_h),
(full_w, full_h))
planner_pose_inputs[e, 3:] = lmb[e]
origins[e] = [lmb[e][2] * args.map_resolution / 100.0,
lmb[e][0] * args.map_resolution / 100.0, 0.]
local_map[e] = full_map[e, :, lmb[e, 0]:lmb[e, 1], lmb[e, 2]:lmb[e, 3]]
local_pose[e] = full_pose[e] - \
torch.from_numpy(origins[e]).to(device).float()
init_map_and_pose()
# slam
sem_map_module = Semantic_Mapping(args).to(device)
sem_map_module.eval()
sem_map_module.set_view_angles([45] * args.num_processes)
# Predict semantic map from frame 1
poses = torch.from_numpy(np.asarray(
[infos[env_idx]['sensor_pose'] for env_idx in range(num_scenes)])
).float().to(device)
_, local_map, _, local_pose = \
sem_map_module(obs, poses, local_map, local_pose)
# Compute Global policy input
locs = local_pose.cpu().numpy()
for e in range(num_scenes):
r, c = locs[e, 1], locs[e, 0]
loc_r, loc_c = [int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution)]
local_map[e, 2:4, loc_r - 1:loc_r + 2, loc_c - 1:loc_c + 2] = 1.
#For now
global_goals = []
for e in range(num_scenes):
np.random.seed(e); c1 = np.random.choice(local_w)
np.random.seed(e + 1000); c2 = np.random.choice(local_h)
global_goals.append((c1,c2))
goal_maps = [np.zeros((local_w, local_h)) for _ in range(num_scenes)]
for e in range(num_scenes):
goal_maps[e][global_goals[e][0], global_goals[e][1]] = 1
newly_goal_set = False
planner_inputs = [{} for e in range(num_scenes)]
for e, p_input in enumerate(planner_inputs):
p_input['newly_goal_set'] =newly_goal_set
p_input['map_pred'] = local_map[e, 0, :, :].cpu().numpy()
p_input['exp_pred'] = local_map[e, 1, :, :].cpu().numpy()
p_input['pose_pred'] = planner_pose_inputs[e]
p_input['goal'] = goal_maps[e]
p_input['new_goal'] = 1
p_input['found_goal'] = 0
p_input['wait'] = wait_env[e] or finished[e]
p_input['list_of_actions'] = list_of_actions_s[e]
p_input['list_of_actions_pointer'] = list_of_actions_pointer_s[e]
p_input['consecutive_interaction'] = None
p_input['consecutive_target'] = None
if args.visualize or args.print_images:
local_map[e, -1, :, :] = 1e-5
p_input['sem_map_pred'] = local_map[e, 4:, :,
:].argmax(0).cpu().numpy()
obs, rew, done, infos, goal_success_s, next_step_dict_s = envs.plan_act_and_preprocess(planner_inputs, goal_spotted_s)
goal_success_s = list(goal_success_s)
view_angles = []
for e in range(num_scenes):
next_step_dict = next_step_dict_s[e]
view_angle = next_step_dict['view_angle']
view_angles.append(view_angle)
fails[e] += next_step_dict['fails_cur']
sem_map_module.set_view_angles(view_angles)
consecutive_interaction_s, target_instance_s = [None]*num_scenes, [None]*num_scenes
for e in range(num_scenes):
num_steps_so_far[e] = next_step_dict_s[e]['steps_taken']
first_steps[e] = False
if goal_success_s[e]:
if list_of_actions_pointer_s[e] == len(list_of_actions_s[e]) -1:
all_completed[e] = True
else:
list_of_actions_pointer_s[e] +=1
goal_name = list_of_actions_s[e][list_of_actions_pointer_s[e]][0]
reset_goal_true_false = [False]* num_scenes
reset_goal_true_false[e] = True
#If consecutive interactions,
returned, target_instance_s[e] = determine_consecutive_interx(list_of_actions_s[e], list_of_actions_pointer_s[e]-1, whether_sliced_s[e])
if returned:
consecutive_interaction_s[e] = list_of_actions_s[e][list_of_actions_pointer_s[e]][1]
infos = envs.reset_goal(reset_goal_true_false, goal_name, consecutive_interaction_s)
torch.set_grad_enabled(False)
spl_per_category = defaultdict(list)
success_per_category = defaultdict(list)
for step in range(args.num_training_frames//args.num_processes):
if sum(finished) == args.num_processes:
print("all finished")
if args.leaderboard and args.test:
if args.test_seen:
add_str = "seen"
else:
add_str = "unseen"
pickle.dump(actseqs, open("results/leaderboard/actseqs_test_" + add_str + "_" + dn + ".p", "wb"))
break
l_step = step % args.num_local_steps
# Reinitialize variables when episode ends
for e,x in enumerate(task_finish):
if x:
spl = infos[e]['spl']
success = infos[e]['success']
dist = infos[e]['distance_to_goal']
spl_per_category[infos[e]['goal_name']].append(spl)
success_per_category[infos[e]['goal_name']].append(success)
traj_number[e] +=1
wait_env[e] = 1.
init_map_and_pose_for_env(e)
if not(finished[e]):
#load next episode for env
number_of_this_episode = args.from_idx + traj_number[e] * num_scenes + e
print("steps taken for episode# ", number_of_this_episode-num_scenes , " is ", next_step_dict_s[e]['steps_taken'])
completed_episodes.append(number_of_this_episode)
pickle.dump(completed_episodes, open("results/completed_episodes_" + args.eval_split + str(args.from_idx) + "_to_" + str(args.to_idx) + "_" + dn +".p", 'wb'))
if args.leaderboard and args.test:
if args.test_seen:
add_str = "seen"
else:
add_str = "unseen"
pickle.dump(actseqs, open("results/leaderboard/actseqs_test_" + add_str + "_" + dn + ".p", "wb"))
load = [False] * args.num_processes
load[e] = True
do_not_update_cat_s[e] = None
wheres_delete_s[e] = np.zeros((240,240))
obs, infos, actions_dicts = envs.load_next_scene(load)
view_angles[e] = 45
sem_map_module.set_view_angles(view_angles)
if actions_dicts[e] is None:
finished[e] = True
else:
second_objects[e] = actions_dicts[e]['second_object']
print("second object is ", second_objects[e])
list_of_actions_s[e] = actions_dicts[e]['list_of_actions']
task_types[e] = actions_dicts[e]['task_type']
whether_sliced_s[e] = actions_dicts[e]['sliced']
task_finish[e] = False
num_steps_so_far[e] = 0
list_of_actions_pointer_s[e] = 0
goal_spotted_s[e] = False
found_goal[e] = 0
list_of_actions_pointer_s[e] = 0
first_steps[e] = True
all_completed[e] = False
goal_success_s[e] = False
obs = torch.tensor(obs).to(device)
fails[e] = 0
goal_logs[e] = []
goal_cat_before_second_objects[e] = None
# ------------------------------------------------------------------
# Semantic Mapping Module
poses = torch.from_numpy(np.asarray(
[infos[env_idx]['sensor_pose'] for env_idx
in range(num_scenes)])
).float().to(device)
_, local_map, _, local_pose = sem_map_module(obs, poses, local_map, local_pose, build_maps = True, no_update = False)
locs = local_pose.cpu().numpy()
planner_pose_inputs[:, :3] = locs + origins
local_map[:, 2, :, :].fill_(0.) # Resetting current location channel
for e in range(num_scenes):
r, c = locs[e, 1], locs[e, 0]
loc_r, loc_c = [int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution)]
local_map[e, 2:4, loc_r - 2:loc_r + 3, loc_c - 2:loc_c + 3] = 1.
for e in range(num_scenes):
if not(do_not_update_cat_s[e] is None):
cn = do_not_update_cat_s[e] + 4
local_map[e, cn, :, :] = torch.zeros(local_map[0, 0, :, :].shape)
for e in range(num_scenes):
if args.delete_from_map_after_move_until_visible and (next_step_dict_s[e]['move_until_visible_cycled'] or next_step_dict_s[e]['delete_lamp']):
ep_num = args.from_idx + traj_number[e] * num_scenes + e
#Get the label that is closest to the current goal
cn = infos[e]['goal_cat_id'] + 4
start_x, start_y, start_o, gx1, gx2, gy1, gy2 = planner_pose_inputs[e]
gx1, gx2, gy1, gy2 = int(gx1), int(gx2), int(gy1), int(gy2)
r, c = start_y, start_x
start = [int(r * 100.0/args.map_resolution - gx1),
int(c * 100.0/args.map_resolution - gy1)]
map_pred = np.rint(local_map[e, 0, :, :].cpu().numpy())
assert local_map[e, 0, :, :].shape[0] == 240
start = pu.threshold_poses(start, map_pred.shape)
lm = local_map[e, cn, :, :].cpu().numpy()
lm = (lm>0).astype(int)
lm = skimage.morphology.binary_dilation(lm, skimage.morphology.disk(4))
lm = lm.astype(int)
connected_regions = skimage.morphology.label(lm, connectivity=2)
unique_labels = [i for i in range(0, np.max(connected_regions)+1)]
min_dist = 1000000000
for lab in unique_labels:
wheres = np.where(connected_regions == lab)
center = (int(np.mean(wheres[0])), int(np.mean(wheres[1])))
dist_pose = math.sqrt((start[0] -center[0])**2 + (start[1] -center[1])**2)
min_dist = min(min_dist, dist_pose)
if min_dist == dist_pose:
min_lab = lab
#Delete that label
wheres_delete_s[e][np.where(connected_regions == min_lab)] = 1
for e in range(num_scenes):
cn = infos[e]['goal_cat_id'] + 4
wheres = np.where(wheres_delete_s[e])
local_map[e, cn, :, :][wheres] = 0.0
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Semantic Policy
newly_goal_set = False
if l_step == args.num_local_steps - 1:
newly_goal_set = True
for e in range(num_scenes):
if wait_env[e] == 1: # New episode
wait_env[e] = 0.
full_map[e, :, lmb[e, 0]:lmb[e, 1], lmb[e, 2]:lmb[e, 3]] = \
local_map[e]
full_pose[e] = local_pose[e] + \
torch.from_numpy(origins[e]).to(device).float()
locs = full_pose[e].cpu().numpy()
r, c = locs[1], locs[0]
loc_r, loc_c = [int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution)]
lmb[e] = get_local_map_boundaries((loc_r, loc_c),
(local_w, local_h),
(full_w, full_h))
planner_pose_inputs[e, 3:] = lmb[e]
origins[e] = [lmb[e][2] * args.map_resolution / 100.0,
lmb[e][0] * args.map_resolution / 100.0, 0.]
local_map[e] = full_map[e, :,
lmb[e, 0]:lmb[e, 1], lmb[e, 2]:lmb[e, 3]]
local_pose[e] = full_pose[e] - \
torch.from_numpy(origins[e]).to(device).float()
locs = local_pose.cpu().numpy()
for e in range(num_scenes):
goal_name = list_of_actions_s[e][list_of_actions_pointer_s[e]][0]
if args.use_sem_policy:
#Just reconst the common map save objects
map_reconst = torch.zeros((4+len(large_objects2idx),240,240))
map_reconst[:4] = local_map[e][:4]
test_see = {}
map_reconst[4+large_objects2idx['SinkBasin']] = local_map[e][4+1]
test_see[1] = 'SinkBasin'
start_idx = 2
for cat, catid in large_objects2idx.items():
if not (cat =='SinkBasin'):
map_reconst[4+large_objects2idx[cat]] = local_map[e][4+start_idx]
test_see[start_idx] = cat
start_idx +=1
if local_map[e][0][120,120] == 0:
mask = np.zeros((240,240))
connected_regions = skimage.morphology.label(1-local_map[e][0].cpu().numpy(), connectivity=2)
connected_lab = connected_regions[120,120]
mask[np.where(connected_regions==connected_lab)] = 1
mask[np.where(skimage.morphology.binary_dilation(local_map[e][0].cpu().numpy(), skimage.morphology.square(4)))] = 1
else:
dilated = skimage.morphology.binary_dilation(local_map[e][0].cpu().numpy(), skimage.morphology.square(4))
mask = skimage.morphology.convex_hull_image(dilated).astype(float)
mask_grid = into_grid(torch.tensor(mask), 8).cpu()
where_ones = len(torch.where(mask_grid)[0])
mask_grid = mask_grid.repeat(73,1).view(73, -1).numpy()
if goal_name in all_objects2idx and next_step_dict_s[e]['steps_taken'] >= 30:
pred_probs = Unet_model(map_reconst.unsqueeze(0).to(device))
pred_probs = pred_probs.view(73, -1)
pred_probs = softmax(pred_probs).cpu().numpy()
pred_probs = (1-args.explore_prob) * pred_probs + args.explore_prob * mask_grid * 1/ float(where_ones)
#Now sample from pred_probs according to goal idx
goal_name = list_of_actions_s[e][list_of_actions_pointer_s[e]][0]
if goal_name =='FloorLamp':
pred_probs = pred_probs[all_objects2idx[goal_name]] + pred_probs[all_objects2idx['DeskLamp']]
pred_probs = pred_probs/2.0
else:
pred_probs = pred_probs[all_objects2idx[goal_name]]
else:
pred_probs = mask_grid[0] * 1/ float(where_ones)
if args.explore_prob==1.0:
mask_wheres = np.where(mask.astype(float))
np.random.seed(next_step_dict_s[e]['steps_taken'])
s_i= np.random.choice(len(mask_wheres[0]))
x_240, y_240 = mask_wheres[0][s_i], mask_wheres[1][s_i]
else:
#Now sample one index
np.random.seed(next_step_dict_s[e]['steps_taken'])
pred_probs = pred_probs.astype('float64')
pred_probs = pred_probs.reshape(64)
pred_probs = pred_probs/ np.sum(pred_probs)
chosen_cell = np.random.multinomial(1, pred_probs.tolist())
chosen_cell = np.where(chosen_cell)[0][0]
chosen_cell_x = int(chosen_cell/8)
chosen_cell_y = chosen_cell %8
#Sample among this mask
mask_new = np.zeros((240,240))
mask_new[chosen_cell_x*30:chosen_cell_x*30+30, chosen_cell_y*30: chosen_cell_y*30 + 30] = 1
mask_new = mask_new * mask
if np.sum(mask_new) == 0:
np.random.seed(next_step_dict_s[e]['steps_taken'])
chosen_i = np.random.choice(len(np.where(mask)[0]))
x_240 = np.where(mask)[0][chosen_i]
y_240 = np.where(mask)[1][chosen_i]
else:
np.random.seed(next_step_dict_s[e]['steps_taken'])
chosen_i = np.random.choice(len(np.where(mask_new)[0]))
x_240 = np.where(mask_new)[0][chosen_i]
y_240 = np.where(mask_new)[1][chosen_i]
global_goals[e] = [x_240, y_240]
test_goals= np.zeros((240,240))
test_goals[x_240,y_240]=1
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Take action and get next observation
found_goal = [0 for _ in range(num_scenes)]
goal_maps = [np.zeros((local_w, local_h)) for _ in range(num_scenes)]
for e in range(num_scenes):
goal_maps[e][global_goals[e][0], global_goals[e][1]] = 1
for e in range(num_scenes):
ep_num = args.from_idx + traj_number[e] * num_scenes + e
cn = infos[e]['goal_cat_id'] + 4
prev_cns[e] = cn
cur_goal_sliced = next_step_dict_s[e]['current_goal_sliced']
if local_map[e, cn, :, :].sum() != 0.:
ep_num = args.from_idx + traj_number[e] * num_scenes + e
cat_semantic_map = local_map[e, cn, :, :].cpu().numpy()
cat_semantic_scores = cat_semantic_map
cat_semantic_scores[cat_semantic_scores > 0] = 1.
wheres = np.where(wheres_delete_s[e])
cat_semantic_scores[wheres] = 0
if np.sum(cat_semantic_scores) !=0:
goal_maps[e] = cat_semantic_scores
if np.sum(cat_semantic_scores) !=0:
found_goal[e] = 1
goal_spotted_s[e] = True
else:
if args.delete_from_map_after_move_until_visible or args.delete_pick2:
found_goal[e] = 0
goal_spotted_s[e] = False
else:
if args.delete_from_map_after_move_until_visible or args.delete_pick2:
found_goal[e] = 0
goal_spotted_s[e] = False
planner_inputs = [{} for e in range(num_scenes)]
for e, p_input in enumerate(planner_inputs):
p_input['newly_goal_set'] =newly_goal_set
p_input['map_pred'] = local_map[e, 0, :, :].cpu().numpy()
p_input['exp_pred'] = local_map[e, 1, :, :].cpu().numpy()
p_input['pose_pred'] = planner_pose_inputs[e]
p_input['goal'] = goal_maps[e]
p_input['new_goal'] = l_step == args.num_local_steps - 1
p_input['found_goal'] = found_goal[e]
p_input['wait'] = wait_env[e] or finished[e]
p_input['list_of_actions'] = list_of_actions_s[e]
p_input['list_of_actions_pointer'] = list_of_actions_pointer_s[e]
p_input['consecutive_interaction'] = consecutive_interaction_s[e]
p_input['consecutive_target'] = target_instance_s[e]
if args.visualize or args.print_images:
local_map[e, -1, :, :] = 1e-5
p_input['sem_map_pred'] = local_map[e, 4:, :,
:].argmax(0).cpu().numpy()
if first_steps[e]:
p_input['consecutive_interaction'] = None
p_input['consecutive_target'] = None
###################################
###################################
obs, rew, done, infos, goal_success_s, next_step_dict_s = envs.plan_act_and_preprocess(planner_inputs, goal_spotted_s)
goal_success_s = list(goal_success_s)
view_angles = []
for e, p_input in enumerate(planner_inputs):
next_step_dict = next_step_dict_s[e]
view_angle = next_step_dict['view_angle']
view_angles.append(view_angle)
num_steps_so_far[e] = next_step_dict['steps_taken']
first_steps[e] = False
fails[e] += next_step_dict['fails_cur']
if args.leaderboard and fails[e] >= args.max_fails:
print("Interact API failed %d times" % fails[e] )
task_finish[e] = True
if not(args.no_pickup) and (args.map_mask_prop !=1 or args.no_pickup_update) and next_step_dict['picked_up'] and goal_success_s[e]:
do_not_update_cat_s[e] = infos[e]['goal_cat_id']
elif not(next_step_dict['picked_up']):
do_not_update_cat_s[e] = None
sem_map_module.set_view_angles(view_angles)
#####################################
#####################################
for e, p_input in enumerate(planner_inputs):
if p_input['wait'] ==1 or next_step_dict_s[e]['keep_consecutive']:
pass
else:
consecutive_interaction_s[e], target_instance_s[e] = None, None
if goal_success_s[e]:
if list_of_actions_pointer_s[e] == len(list_of_actions_s[e]) -1:
all_completed[e] = True
else:
list_of_actions_pointer_s[e] +=1
goal_name = list_of_actions_s[e][list_of_actions_pointer_s[e]][0]
reset_goal_true_false = [False]* num_scenes
reset_goal_true_false[e] = True
returned, target_instance_s[e] = determine_consecutive_interx(list_of_actions_s[e], list_of_actions_pointer_s[e]-1, whether_sliced_s[e])
if returned:
consecutive_interaction_s[e] = list_of_actions_s[e][list_of_actions_pointer_s[e]][1]
infos = envs.reset_goal(reset_goal_true_false, goal_name, consecutive_interaction_s)
goal_spotted_s[e] = False
found_goal[e] = 0
wheres_delete_s[e] = np.zeros((240,240))
time.sleep(args.wait_time)
# ------------------------------------------------------------------
#End episode and log
for e in range(num_scenes):
number_of_this_episode = args.from_idx + traj_number[e] * num_scenes + e
if number_of_this_episode in skip_indices:
task_finish[e] = True
for e in range(num_scenes):
if all_completed[e]:
if not(finished[e]) and args.test:
print("This episode is probably Success!")
task_finish[e] = True
for e in range(num_scenes):
if num_steps_so_far[e] >= args.max_episode_length and not(finished[e]):
print("This outputted")
task_finish[e] = True
for e in range(num_scenes):
number_of_this_episode = args.from_idx + traj_number[e] * num_scenes + e
if task_finish[e] and not(finished[e]) and not(number_of_this_episode in skip_indices):
f = open("results/logs/log_" + args.eval_split + "_from_" + str(args.from_idx) + "_to_" + str(args.to_idx) + "_" + dn +".txt" , "a")
number_of_this_episode = args.from_idx + traj_number[e] * num_scenes + e
f.write("\n")
f.write("===================================================\n")
f.write("episode # is " + str(number_of_this_episode) + "\n")
for log in next_step_dict_s[e]['logs']:
f.write(log + "\n")
if all_completed[e]:
if not(finished[e]) and args.test:
f.write("This episode is probably Success!\n")
if num_steps_so_far[e] >= args.max_episode_length and not(finished[e]):
f.write("This outputted\n")
if not(args.test):
log_entry, success = envs.evaluate(e) #success is (True,), log_entry is ({..}, )
log_entry, success = log_entry[0], success[0]
print("success is ", success)
f.write("success is " + str(success) + "\n")
print("log entry is " + str(log_entry))
f.write("log entry is "+ str(log_entry) + "\n")
if success:
successes.append(log_entry)
else:
failures.append(log_entry)
print("saving success and failures for episode # ", number_of_this_episode , "and process number is", e)
pickle.dump(successes, open("results/successes/" + args.eval_split + "_successes_from_" + str(args.from_idx) + "_to_" + str(args.to_idx) + "_" + dn +".p", "wb"))
pickle.dump(failures, open("results/fails/" + args.eval_split + "_failures_from_" + str(args.from_idx) + "_to_" + str(args.to_idx) + "_" + dn +".p", "wb"))
else:
print("episode # ", number_of_this_episode , "ended and process number is", e)
if args.leaderboard and args.test:
actseq = next_step_dict_s[e]['actseq']
actseqs.append(actseq)
f.close()
#Add to analyze recs
analyze_dict = {'task_type': actions_dicts[e]['task_type'], 'errs':next_step_dict_s[e]['errs'], 'action_pointer':list_of_actions_pointer_s[e], 'goal_found':goal_spotted_s[e],\
'number_of_this_episode': number_of_this_episode}
if not(args.test):
analyze_dict['success'] = envs.evaluate(e)[1][0]
else:
analyze_dict['success'] = all_completed[e]
analyze_recs.append(analyze_dict)
pickle.dump(analyze_recs, open("results/analyze_recs/" + args.eval_split + "_anaylsis_recs_from_" + str(args.from_idx) + "_to_" + str(args.to_idx) + "_" + dn +".p", "wb"))
if __name__ == "__main__":
main()
print("All finsihed!")