-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
133 lines (116 loc) · 5.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from __future__ import division
from __future__ import print_function
import time
import os
import tensorflow as tf
from utils import *
from metrics import *
from models import GCN_Align
# Set random seed
seed = 12306
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('lang', 'zh_en', 'Dataset string.') # 'zh_en', 'ja_en', 'fr_en'
flags.DEFINE_float('learning_rate', 20, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 2000, 'Number of epochs to train.')
flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('gamma', 3.0, 'Hyper-parameter for margin based loss.')
flags.DEFINE_integer('k', 5, 'Number of negative samples for each positive seed.')
flags.DEFINE_float('beta', 0.9, 'Weight for structure embeddings.(SE+AE)')
flags.DEFINE_float('beta3', 0.7, 'Weight for structure embeddings.(GCN+TransE)')
flags.DEFINE_integer('se_dim', 200, 'Dimension for SE.')
flags.DEFINE_integer('ae_dim', 100, 'Dimension for AE.')
flags.DEFINE_integer('seed', 3, 'Proportion of seeds, 3 means 30%')
flags.DEFINE_float('weight_decay', 1e-5, 'Weight for L2 loss on embedding matrix.')
# TransE params
gcn_data_path = 'data/' + FLAGS.lang + '/'
gcn_data_converted_path = 'data/' + FLAGS.lang + '/for_jape/'
jape_results = gcn_data_converted_path + ('0_' + str(FLAGS.seed)) + '/jape_ent_embeddings.npy'
jape_results_converted = gcn_data_converted_path + ('0_' + str(FLAGS.seed)) + '/jape_ent_embeddings_converted.npy'
# Load data
adj, ae_input, train, test, ent2id_div, KG = load_data(FLAGS.lang)
# TransE vec
print("prepare data for jape...")
mp1, mp2 = gcn_data_to_jape(train, test, ent2id_div[0], ent2id_div[1],
KG[0], KG[1], '0.' + str(FLAGS.seed),
gcn_data_converted_path)
print("running jape_se...")
if not os.path.exists(jape_results):
runJAPE = os.system('python3 jape_code/se_pos_neg.py ' + gcn_data_converted_path + ' 0.' + str(FLAGS.seed))
if runJAPE == 0:
print('jape finished.')
else:
print('some errors occur when co-training.')
jape_results_to_gcn(mp1, mp2, np.load(jape_results), jape_results_converted)
print("return jape results finished.")
TransE_vec = np.load(jape_results_converted)
print('shape of TransE embedding:', TransE_vec.shape)
# print('TransE')
# get_hits(TransE_vec, test)
# Some preprocessing
support = [preprocess_adj(adj)]
num_supports = 1
model_func = GCN_Align
k = FLAGS.k
e = ae_input[2][0]
# Define placeholders
ph_ae = {
'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'features': tf.sparse_placeholder(tf.float32), #tf.placeholder(tf.float32),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder_with_default(0, shape=())
}
ph_se = {
'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'features': tf.placeholder(tf.float32),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder_with_default(0, shape=())
}
# Create model
model_ae = model_func(ph_ae, input_dim=ae_input[2][1], output_dim=FLAGS.ae_dim, ILL=train, sparse_inputs=True, featureless=False, decay=True, logging=True)
model_se = model_func(ph_se, input_dim=e, output_dim=FLAGS.se_dim, ILL=train, sparse_inputs=False, featureless=True, decay=False, logging=True)
# Initialize session
sess = tf.Session()
# Init variables
sess.run(tf.global_variables_initializer())
cost_val = []
t = len(train)
L = np.ones((t, k)) * (train[:, 0].reshape((t, 1)))
neg_left = L.reshape((t * k,))
L = np.ones((t, k)) * (train[:, 1].reshape((t, 1)))
neg2_right = L.reshape((t * k,))
# Train model
for epoch in range(FLAGS.epochs):
if epoch % 10 == 0:
neg2_left = np.random.choice(e, t * k)
neg_right = np.random.choice(e, t * k)
# Construct feed dictionary
feed_dict_ae = construct_feed_dict(ae_input, support, ph_ae)
feed_dict_ae.update({ph_ae['dropout']: FLAGS.dropout})
feed_dict_ae.update({'neg_left:0': neg_left, 'neg_right:0': neg_right, 'neg2_left:0': neg2_left, 'neg2_right:0': neg2_right})
feed_dict_se = construct_feed_dict(1.0, support, ph_se)
feed_dict_se.update({ph_se['dropout']: FLAGS.dropout})
feed_dict_se.update({'neg_left:0': neg_left, 'neg_right:0': neg_right, 'neg2_left:0': neg2_left, 'neg2_right:0': neg2_right})
# Training step
outs_ae = sess.run([model_ae.opt_op, model_ae.loss], feed_dict=feed_dict_ae)
outs_se = sess.run([model_se.opt_op, model_se.loss], feed_dict=feed_dict_se)
cost_val.append((outs_ae[1], outs_se[1]))
# Print results
print("Epoch:", '%04d' % (epoch + 1), "AE_train_loss=", "{:.5f}".format(outs_ae[1]), "SE_train_loss=", "{:.5f}".format(outs_se[1]))
print("Optimization Finished!")
# Testing
feed_dict_ae = construct_feed_dict(ae_input, support, ph_ae)
feed_dict_se = construct_feed_dict(1.0, support, ph_se)
vec_ae = sess.run(model_ae.outputs, feed_dict=feed_dict_ae)
vec_se = sess.run(model_se.outputs, feed_dict=feed_dict_se)
# print("AE")
# get_hits(vec_ae, test)
print("SE")
get_hits(vec_se, test)
print("SE+AE")
GCN_vec = get_combine_hits(vec_se, vec_ae, FLAGS.beta, test)
print('Result of GCN+TransE')
EMB_vec = get_combine_hits(GCN_vec, TransE_vec, FLAGS.beta3, test)